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Abstract
In various international policy processes such as the UN Sustainable Development Goals, an

urgent demand for robust consumption-based indicators of material flows, or material footprints

(MFs), has emerged over the past years. Yet, MFs for national economies diverge when calculated

with different Global Multiregional Input–Output (GMRIO) databases, constituting a significant

barrier to a broad policy uptake of these indicators. The objective of this paper is to quantify the

impact of data deviations between GMRIO databases on the resulting MF. We use two meth-

ods, structural decomposition analysis and structural production layer decomposition, and apply

them for a pairwise assessment of threeGMRIOdatabases, EXIOBASE, Eora, and theOECD Inter-

Country Input–Output (ICIO) database, using an identical set of material extensions. Although all

three GMRIO databases accord for the directionality of footprint results, that is, whether a coun-

tries’ final demand depends on net imports of rawmaterials from abroad or is a net exporter, they

sometimes show significant differences in level and composition of material flows. Decomposing

the effects from the Leontief matrices (economic structures), we observe that a few sectors at the

very first stages of the supply chain, that is, raw material extraction and basic processing, explain

60% of the total deviations stemming from the technology matrices. We conclude that further

development of methods to align results from GMRIOs, in particular for material-intensive sec-

tors and supply chains, should be an important research priority. This will be vital to strengthen

the uptake of demand-basedmaterial flow indicators in the resource policy context.

K EYWORDS

material footprint, multiregional input–output databases, rawmaterial equivalents, resource pol-

icy, structural decomposition analysis, structural production layer decomposition

1 INTRODUCTION

In an increasingly globalized world, supply chains of primary materials, goods, and services span across countries and continents, disconnecting

the location of production from the place of final demand. Thus, foreign consumption increasingly drives a range of local environmental and social

problems in countries that extract primarymaterials or manufacture products (Wiedmann & Lenzen, 2018).Within industrial ecology, the analysis

of these global “teleconnections” has become an important research field and several special issues in this journal have recently been devoted to

this topic (see Hubacek, Feng, Chen, & Kagawa, 2016; Tukker,Wood, & Giljum, 2018).

Assessing these distant connections requires the application of supply chain–wide indicators with a global coverage. For the category of raw

materials, the indicator “rawmaterial consumption (RMC)” has been introduced. The RMC comprises material extractions that enter the economy

andaredirectly and indirectly required to satisfy domestic final demand in a specific country, independently of the geographical locationofmaterial

extraction. In line with many other studies (e.g., Giljum, Bruckner, & Martinez, 2015; Wiedmann et al., 2015), we use the term “material footprint”

(MF) in this paper when referring to the RMC indicator. In the past few years, this indicator has been employed to assess raw materials embod-

ied in internationally traded products and the life cycle–wide environmental pressure of consumption of single countries (Kovanda &Weinzettel,
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2013; López, Arce, Morenate, & Zafrilla, 2017; Schaffartzik, Eisenmenger, Krausmann, & Weisz, 2014; Wang et al., 2014), world regions such as

the EU (Giljum et al., 2016; Schoer, Weinzettel, Kovanda, Giegrich, & Lauwigi, 2012), as well as for performing comparative international studies

(Bruckner, Giljum, Lutz, & Wiebe, 2012; Giljum, Bruckner, et al., 2015; Pothen, 2017; Schandl et al., 2017; Tian, Wu, Geng, Bleischwitz, & Chen,

2017;Wiedmann et al., 2015).

Various international policy processes,most prominently theUNSustainableDevelopmentGoals (SDGs), require robust indicators for resource

efficiency of production and consumption (see SDG target 8.4) to inform about the success of policies that aim to improve the overall resource

efficiencyof national economies and thereby reduce environmental pressures and impacts of economic activities.MF indicators havebeen selected

by the Inter-Agency ExpertGroup (IAEG) tomonitor progress for SDG targets 8.4 and12.2 (UnitedNations, 2017). They are also used to inform the

resource efficiency initiative of the Group of 7 (G7, 2015), and the Organisation for Economic Co-operation and Development's (OECD's) process

toward reporting demand-based indicators for material flows in the context of the “Green Growth” initiative (OECD, 2017). A major obstacle to

broaduptakeof theMF indicatorby thepolicy community is remaininguncertainties aboutmethodologicalmaturity anddata reliability. This has led

the IAEG to classify the footprint indicator as tier 3 in the SDG indicator classification that refers to such indicators where a global methodological

standard is in development, hampering countries’ ability to report.

Three alternative methodological approaches are used to calculate the MF indicator. Methods based on various forms of environmentally

extended input–output analysis (IOA), methods applying material intensity coefficients derived from process analyses and life cycle assessment

(LCA), as well as hybrid approaches combining elements of both IOA and LCA (Lutter, Giljum, & Bruckner, 2016; Schoer,Wood, Arto, &Weinzettel,

2013; Wiesen &Wirges, 2017). The development of Global Multiregional Input–Output (GMRIO) databases with high country and sector detail,

such as Eora and EXIOBASE, has provided a particular boost for various footprint assessments on the global level in recent years (Giljum, Bruckner,

& Lutter, 2018; Tukker et al., 2016; Tukker, Giljum, &Wood, 2018;Wiedmann, 2016;Wiedmann & Lenzen, 2018).

A solid understanding of the reliability and uncertainty of demand-based indicators is necessarywhen applying themodels in the context of poli-

cies addressing consumption activities in relation to the environmental pressures and impacts that occur along the supply chains. For the carbon

footprint indicator, a number of studies have compared various GMRIO databases and have identified the main factors causing the observed dif-

ferences in the indicator results (Arto, Rueda-Cantuche, & Peters, 2014;Moran &Wood, 2014; Owen, Steen-Olsen, Barrett,Wiedmann, & Lenzen,

2014; Owen, Wood, Barrett, & Evans, 2016; Wieland, Giljum, Bruckner, Wood, & Owen, 2018). Previous research on national-level MFs has illus-

trated that indicator values diverge when using different GMRIO databases (Eisenmenger et al., 2016; Giljum, Bruckner, et al., 2015; Giljum et al.,

2015, 2017). Some studies have also pointed to the importance of the first processing stages as a key determining factor for a high accuracy of the

overall MF results (Galli, Weinzettel, Cranston, & Ercin, 2013; Schoer et al., 2012).

However, so far an assessment of the impact of deviations in the GMRIO databases onMFs has been lacking, which is a gap that is addressed in

this paper. With our analysis, we aim at identifying the critical sectors in the GMRIO systems that lead to disproportionate differences in MFs, as

opposed to the carbon footprint differences that have already been analyzed extensively in the literature. To do so, we apply structural decompo-

sition analysis (SDA) and structural production layer decomposition (SPLD) methods. SDA allows quantifying the differences in footprints caused

by the main data blocks of the GMRIO data system, such as the Leontief inverse matrix or final demand. By decomposing the Leontief inverse

matrix, SPLD then enables zooming into the technologymatrix to identify differences in those interindustry inputs that have the highest influence

onMFs. Therefore, we are able to identify domains of the GMRIO databases where further improvement of data is necessary to develop methods

andmodels that increase the alignment ofMF results.

The rest of the paper is structured as follows. Section 2 introduces the data sources and the applied methods. Section 3 contains the results,

starting with an overview of MF deviations between the selected GMRIO databases and then illustrating the SDA and SPLD results for specific

countries and groups of rawmaterials. Section 4 discusses the results from the perspective of future options to improve the robustness of GMRIO-

basedMF calculations. Section 5 concludes the article.

2 DATA AND METHODS

2.1 GMRIO databases andmaterial extraction data

ThecomparisonofMF indicatorsperformed in this paper employs threeGMRIOframeworks: EXIOBASE, Eora, and—for the first time in the context

of MF publications—the OECD Inter-Country Input–Output (ICIO) database. Table 1 provides an overview of the main properties of the GMRIO

databases. An extensive description and comparative assessment of the data sources and construction principles for the three GMRIO databases

can be found in chapter 1 in Supporting Information S1.

EXIOBASE was developed in several European research projects and was particularly designed for environment-related applications (Wood

et al., 2015). EXIOBASE version 3 distinguishes 200 products (and 163 industries) for all covered countries and regions, of which 33 products

(and 25 industries) refer to extraction of biotic and abiotic raw materials (Stadler et al., 2018). Data are published as a multiregional input–

output (IO) table. EXIOBASE models all EU-28 countries and their 16 most important trading partners plus five aggregated “Rest-of-the-World

(RoW)” regions. The Eora database is the most detailed GMRIO database currently available and comprises data for 189 individual countries
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TABLE 1 Main properties of the EXIOBASE, Eora, andOECD ICIOMRIO data bases

Category EXIOBASE Eora OECD ICIO

Type MRIOT CombinedMRSUT/MRIOT MRIOT

Countries/regions 44 countries plus five
Rest-of-the-World regions

189 countries 61 countries plus one
Rest-of-the-World region

Total number of sectors 163 industries/200 products 26 to∼500 industries/products 34 industries

Material extraction sectors 25 industries/33 products 3–63 industries/products 2 industries

Time series 1995–2011 1990–2013 1995, 2000, 2005, and 2008–2011

MRIOT=multiregional input–output table; MRSUT=multiregional supply-use table.

(Lenzen, Moran, Kanemoto, & Geschke, 2013). The sector detail for each country in themultiregional IO table ranges between 25 (for many devel-

oping countries) and more than 500 sectors (in some industrialized countries), thereof 2–63 material extraction sectors. The final GMRIO table

has a mixed structure that varies from country to country, where some regions are represented by supply-use and others by IO tables. OECD's

ICIO database (OECD, 2015b) comprises 61 countries. Intersectoral trade flows are modeled for 34 industries, of which only two refer to extrac-

tive industries. The final GMRIO database is published in the form of symmetric IO tables. OECD ICIO can be regarded as themost “authoritative”

GMRIO database currently available with regard to the acceptance by national institutions, such as national statistical offices (Tukker et al., 2018).

It is important to note that all three GMRIO models apply the industry-technology assumption to construct the IO tables from the underlying

supply-use tables. However, the three databases employ various strategies for balancing theGMRIO system, which can significantly alter the origi-

nal data, in order to achieve coherence at the global level. There is different priority given to various parts of the data byGMRIOmodel developers,

for example, whether national accounts data or trade data are used as the main constraint in the balancing procedures (Moran & Wood, 2014;

Wood, Hawkins, Hertwich, & Tukker, 2014).

In this paper, twodifferent aggregation levels are applied. Themodels in full detail are usedwhen analyzing absoluteMFs.However, the SDAand

SPLD techniques, as described below, can only be appliedwhen thematrices of the GMRIO databases are of identical size and structure. The three

multiregional input—output tables were therefore aggregated into a “common classification (CC)” comprising 40 countries plus a “RoW” region

and 17 industries following the example of earlier studies (see Owen et al., 2014; Steen-Olsen et al. 2014). The full list of countries/regions and

industries in the CC can be found in chapter 2 in Supporting Information S1. The concordance matrices for the three models are added as an Excel

file in Supporting Information S2. Note that when GMRIOmodels are applied under the CC, a subscription cc is added to themodel name.

In the case of the full models, material extraction data are allocated to the number of primary sectors available in the various GMRIO databases

(see Table 1). Under the CC, material extraction is allocated to only two sectors (“agriculture” and “mining”) in all cases, as the ICIO database pro-

vides themain constraint.

The large influence of differences in the environmental satellite data included in various GMRIO databases on footprint results has been

stressed by other studies (e.g., Owen et al., 2014). To ensure that observed variations in indicator results can be assigned solely to differences

in monetary elements of the GMRIO systems, we apply one harmonized data set for global domestic material extraction across all models. This

data set was compiled for UN Environment's International Resource Panel (see http://www.resourcepanel.org/global-material-flows-database),

covering 44 material extraction categories for all countries worldwide (Schandl et al., 2017; UNEP, 2016). The analysis underlying this paper was

performed for one year only, that is, 2010.

2.2 SDA and SPLDmethods

We select two complementary methods, SDA and SPLD, that allow quantifying the contributions of differences in the underlying raw data of the

GMRIO models to differences in the absolute MF indicator. Both methods are briefly summarized below; detailed descriptions can be found in

chapter 3 in Supporting Information S1.

SDA is adecompositionmethodbasedon IOmodels that allowsbreakingdown the changes in somevariable into the changes in its determinants.

By that means, it can help to reveal the drivers behind the changes of indicators (Dietzenbacher & Los, 1998). In recent years, SDA has beenwidely

applied to the case of environmental indicators,most notably to the issue of energy use and greenhouse gas emissions (Lenzen, 2016). A few studies

have also investigated the drivers for changes in MFs applying an SDA approach (Munoz & Hubacek, 2008; Plank, Eisenmenger, Schaffartzik, &

Wiedenhofer, 2018; Wang et al., 2014; Weinzettel & Kovanda, 2011; Wenzlik, Eisenmenger, & Schaffartzik, 2015). In this paper, we do not use

SDA to understand the drivers of change between two points in time, but assess the drivers of MF variations calculated by a pair of two GMRIO

databases for the same year (see Owen et al., 2014 for a similar study on the carbon footprint). Applying SDA allows illustrating the impact of data

differences in the blocks of the Leontief matrix (L), aggregated final demand (Y), and total output (x).

Additionally, we apply the SPLDmethod that has recently been introduced byWieland et al. (2018). At its core, SPLD structurally decomposes

a set of PLD (production layer decomposition) results. The central idea of SPLD is thus a structural decomposition that uses the transactionmatrix

instead of the Leontief inversematrix, as usually done in SDA. For the decomposition exercise, the SPLD calculus uses the interindustry transaction

matrix and the resulting technology matrices (A-matrices) of various orders, thus reflecting the different production layers. SPLD thereby enables

http://www.resourcepanel.org/global-material-flows-database
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F IGURE 1 Comparison of material footprints per capita, threemodel pairs, 2010
Note: We exclude Luxembourg from the figure, as thematerial footprint is significantly higher than that of all other countries, that is, beyond 70
tons per capita in some of themodels, mainly driven by the very high GDP per capita levels. Further, we do not show the value of the group of
“Rest-of-the-World,” as this group contains countries with highly varyingmaterial use profiles.

differentiating between effects stemming from data differences of specific elements or parts in the A-matrix, for example, trade blocks versus

domestic blocks and intermediate flows between different industries. Thereby, themost significant elements in the technologymatrix, which cause

differences in theMF indicator calculated with different GMRIOmodels, can be identified.

3 RESULTS

We start this section with an analysis of the deviations between the aggregated MF indicators calculated with the three GMRIO databases in full

detail. We then select two illustrative example countries with high deviations in the MF results for further investigation applying SDA and SPLD

using the CC versions of the GMRIO models. The final section lifts the analysis back to the level of all investigated countries, drawing general

conclusions from the SPLD on themost important sectors and regions in the technologymatrix causing the deviations in theMF results.

3.1 AggregatedMFs

Figure 1 provides a pairwise comparison of the MFs per capita calculated with the EXIOBASE, Eora, and ICIO models in full detail for the year

2010, with the same population data from the World Bank being taken for all three models. For illustrative purposes, we define a discrepancy
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range of 15% between the model results. The thick gray line (45◦) indicates equality of results. For countries located off-diagonal but between the

two thin gray lines, the footprint results of the two compared models deviate by a maximum of 15%. Country codes are provided for all countries

outside the discrepancy range and for selectedmajor countrieswithin the corridor. Results for all countries can be found in chapter 4 in Supporting

Information S1.

Of all investigated countries, 46% (18 countries) are located within the discrepancy range of 15% across the three model pairs. This group

comprises a number of European countries of different sizes and economic structures, such as Germany, France, Denmark, Czech Republic, and

Hungary, other OECD countries including the United States, Canada, Korea, and Australia, but also emerging economies, notably China, India, and

Brazil.

However, for several other countries, deviations in theMF calculatedwith differentmodels are remarkable. For example, EXIOBASE suggests a

MF for Taiwan in 2010 of 21.9 tons per capita, whereas Eora's result is only 9.1 tons per capita. In contrast, Eora's result for Slovakia is much higher

compared to EXIOBASE (37.5 tons versus 21.3 tons). For theNetherlands, ICIOdelivers 13.9 tons per capita, andEora delivers 23.5 tons per capita.

For Russia, the results generated with Eora and ICIO are comparable (8.0 and 8.4 tons), while EXIOBASE's result is around 50% larger (12 tons per

capita).

Across the three GMRIO databases and for the vast majority of countries, results are directionally similar regarding the question, whether a

country has a positive or negative raw material trade balance (RTB), that is, whether a country's final demand depends on net imports from other

countries or serves as net exporter of raw materials embodied in international trade. While the United States, Japan, South Korea, and several

European countries are identified as the main net importing countries, Australia and the BRIICS countries (Brazil, Russia, India, Indonesia, China,

and South Africa) are the main net exporting countries in all three GMRIO databases (see Supporting Information S1, chapter 5 for the respective

RTB figure).

When applying the CC to the specific models, the MF indicator on the country level differs from the assessments applying the GMRIO models

with full sector and country detail. The number of countries within the deviation corridor is lower, with only 15 countries showing discrepancies of

15% or less across all threemodel pairs (see Supporting Information S1, chapter 6 for detailed figures). The impact of the aggregation from the full

detail to the CC on a country's MF is illustrated in detail in chapter 4 in Supporting Information S1. With 1.5%, the average percentage deviation

across all countries is lowest in ICIO, which could be expected, given that the sector classification in ICIO (34 industries) is closest to the one in the

CC (17 sectors). In Eora, the average deviation is 7.7% and in EXIOBASE, the average deviation is 8.3%. The impact of the aggregation is very small

in some countries, for example, Korea with a maximum change of 3% across the three models, Spain with 4.5%, or China with 5%. However, for

other countries, theMF results change notably. Representatives of this group of countries are theUnited States (amaximum change of 20% across

the threemodels), Russia (34%), the Netherlands (66%), and Belgium (71%).

As this paper focuses on the investigation of the differences in the interindustry matrices and their impacts on the MF indicators, the issue

of deviations stemming from different aggregation levels is not further analyzed in detail (for studies investigating the aggregation effect in MF

indicators, see de Koning et al., 2015; Piñero et al., 2015). However, wewill comment on the aggregation issue in Section 4, after the SDA and SPLD

results have been presented.

3.2 Illustrative examples of SDA and SPLD results

For illustrating the results of the SDA and SPLD assessments, we selected two example countries for detailed investigations: the Netherlands and

Russia. Both countries have significantmodel deviationswith regard to the resultingMF,when calculated bothwith the full and theCCmodels (see

above); at the same time, both represent countries of a significant economic output and of assumed adequate data quality. Further, they differ with

regard to the extent that domestic versus foreignmaterial extractions contribute to theMF. In the following, we present the results for theNether-

lands. The detailed assessment for Russia can be found in chapter 7 in Supporting Information S1. In addition to the contribution to differences

in the aggregate MF indicator, the comparisons are also disaggregated according to renewable (i.e., biomass) and non-renewable (i.e., fossil fuels,

minerals, andmetal ores) materials.

We first illustrate the SDA results for the MF per capita for the Netherlands (Figure 2). Performing an SDA allows identifying the main factors

in the GMRIOmodels that cause the observed deviations.With 15.6 and 17.6 tons per capita for the EXIOBASEcc–Eoracc and ICIOcc–Eoracc pairs,

differences in the Leontief inverse matrix (L-effect) cause the highest deviations in MFs. In the EXIOBASEcc–ICIOcc pair, the Y-effect reflecting

differences in data on final demand is most significant. The x-effect is smallest in all three model pairs. Results are comparable to those found for

the case of Russia (see Figure SI 1–3 in Supporting Information S1).

In the next step, we applied the SPLD method, which allows for decomposing the Leontief inverse matrix and zooming into this part of the

GMRIO data system. The results of the SPLD assessment are contained in a matrix that illustrates the contribution of data deviations in each

cell in the multiregional technology (or A) matrix to differences in the overall MF indicator. For illustrative purposes, we aggregated the results

matrix from two perspectives; first from a geographical point of view, representing all sectors in each of the countries. In this view, trade flows are

on the off-diagonal cells with the supplying countries in the rows and the receiving countries in columns; second, from an industry point of view,

aggregating all countries for each of the industries.
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F IGURE 2 MFper capita of the Netherlands, 2010, SDA of three GMRIO pairs

As the example pair for further investigations applying the SPLD technique, we select the ICIOcc–Eoracc pair with the highest L-effect in the

SDA. The SPLD graphs for the other twomodel pairs are included in chapter 8 in Supporting Information S1.

Figure 3a reveals the geographical distribution of impacts on theNetherlandsMF stemming froma comparison of the domestic and trade blocks

in the multiregional A-matrices of the ICIOcc and Eoracc models. The cells on the diagonal matrix represent the domestic IO tables of all countries

considered in the CC, whereas the off-diagonal cells relate to imports and exports between different pairs of countries. The bubbles indicate the

absolute data deviations between the domestic and trade blocks of the A-matrices of EXIOBASEcc and Eoracc as well as the magnitude of their

contribution to the differences in theNetherlandsMF stemming from the technologymatrix. Note that the sumof the A-effectmatrices presented

here converge toward the total L-effect as more and more production layers are decomposed (see chapter 3 in Supporting Information S1 for

additional information on the SPLD technique).

In contrast to Russia, where differences mostly root in the domestic data of Russia itself (see Figure SI 1–4 in Supporting Information S1), Fig-

ure 3a illustrates that for the Netherlands, a large number of import blocks in the aggregated interindustry matrix contribute to the deviations in

theMF. The high dependency of domestic final demand on imports from abroad is visible in the bubbles in the columnmarked “Netherlands (NL)”.

This indicates that data deviations in the respective trade blocks, for example, imports from Belgium, Germany, France, Canada, and, very notably,

from the large “RoW” region to the Netherlands, have significant impacts on the MF results. Together, the direct trade blocks add up to 64% of all

deviations stemming from the A-matrix.

In addition, further upstream deviations in domestic tables of several other countries also play a role, including the tables of Belgium, Germany,

the United States, India, Russia, and the RoW region. In order to align the ICIOcc- and Eoracc-based MF results for the Netherlands as a country,

which is highly intertwined with the global economy, a much larger number of countries needs to be put in focus compared to the case of Russia

(see Supporting Information S1, chapter 7).

Figure 3b illustrates the sector perspective on theNetherlandsMFdeviations in the ICIOcc–Eoracc pair, covering all global supply chains serving

Netherland's domestic final demand. Overall, 83% of all deviations related to the A-matrix can be attributed to the non-renewable MF and only

17% to the renewableMF.

The sources for deviations in the biomass footprint of theNetherlands aremainly related to the deliveries of the agricultural (including forestry)

sector to food (15%of total A-matrix deviations in the biomass footprint) and—very notably—to public administration (39%). To a lower extent, also

the supply chain of food products, that is, deliveries of food to sale (2%) and to public administration (13%), plays a role.

The importance of data deviations regarding public administration is also visible in the bubble chart on non-renewable raw materials. High-

est deviations in the non-renewable part of the MF are caused by deliveries of the mining sector to the petroleum and chemicals sector (10%

of total A-matrix effects on the abiotic MF), the electricity/gas/water sector (6%), as well as to public administration (32%). Also deliveries of

petroleum and chemicals to public administration (13%) impact on the deviations. Across all types of raw materials, it can be concluded that

data deviations in the sectors downstream the supply chains, that is, manufacturing and service sectors only contribute minor to deviations in MF

results.

3.3 Overview of country results

Weperformed the SDA and SPLD assessments for all countries in the CC. The results of the SDA are illustrated in detail in Figure 4.

The analysis reveals that across the three model pairs, no clear pattern can be extracted regarding a specific importance of one of the three

effects (L-effect, Y-effect, and x-effect) in contributing to the overall differences in MFs. In the Eoracc–EXIOBASEcc pair, the L-effect is respon-

sible for 37% of the deviations across all countries and thus more important than the two other effects (33% and 30%, respectively). For the

EXIOBASEcc–ICIOcc pair, it is the Y-effect (36%) compared to 33% and 31%, respectively, for the L- and x-effects. For the Eoracc–ICIOcc pair, the

x-effect is strongest (45%, compared to 32% and 23%, respectively, for the L- and Y-effects).
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F IGURE 3 SPLD results for theMF of the Netherlands, country perspective (a), sector perspective (b), ICIOcc–Eoracc pair, 2010
Note: The size of the bubbles is scaled for each graph separately in order to best illustrate the deviation patterns for each specific aggregation and
material group. Bubble sizes across figures can therefore not be directly compared.

In order to provide an overview across all investigated countries and to identify general patterns from the SPLD, Figure 5 presents the aggre-

gated results for the sector perspective across all investigated countries in the threemodel pairs for the cases of renewable andnon-renewable raw

materials. The pie charts below the sector illustrations provide an aggregated information, whether the domestic or foreign part of the interindus-

try matrix contributes more prominently to the deviation of the respectiveMF indicator.

Figure 5 illustrates that the patterns described for the two country examples above can be generalized, when analyzing the aggregated view

across all countries. On average across the model pairs, the two rawmaterial extraction sectors of agriculture and mining together explain 60% of

all A matrix–related deviations. In contrast, data deviations further down the supply chains, that is, in sectors producing manufacturing products

and in service sectors, have a much smaller impact. This result has important implications for reducing uncertainties with regard to GMRIO-based

MF calculations (see Section 4).

Regarding renewable raw materials, the supply structure of the agricultural sector is responsible for 60% of the biomass footprint deviation

stemming from the A-matrix across the three model pairs. The food sector explains another 18% Interindustry relations of all other sectors com-

bined are thus responsible for only 22%. For the agriculture sector, its own use as well as its supply structures to a range of receiving sectors are
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F IGURE 4 SDA results for all countries in the common classification, 2010

highly influencing the results, including the deliveries to the food (4) and textiles (5) sectors, to sectors further processing non-renewable material

(particularly, petroleum/chemicals, sector 6), and also to service sectors, most notably construction (12) and sale (13). In addition, the supply of

processed biomass by the food sector contributes to the impact of the difference in A-matrices on the biomass footprint of countries, most pro-

nounced for the sector's own use of food products as well as deliveries to the retailers in the sale sector. For some countries, other deliveries also

play a role, such as the supply of biotic materials to construction, sale, or public administration.

With regard to non-renewable raw materials, the mining sectors’ supply structure to all other sectors explains 59% of the differences in the

abiotic MF resulting from the technology matrix across the three model pairs. Most notably, deviations in the deliveries of the mining sector

to petroleum/chemicals (6) and metal products (7) show the strongest impacts. With much less importance follow the supply structures of the

petroleum/chemicals (6) sector to a range of other manufacturing and service sectors. Data deviations in sector 6 contribute 16% across the three

model pairs. All other sectors combined explain the remaining 25%.

The geographical perspective (pie charts at the bottom of Figure 5) reveals that regarding renewable raw materials, the domestic blocks gen-

erally play a more important role than the trade blocks (an average of 63% of all A-matrix effects across the three model pairs). Concerning

non-renewable rawmaterials, the trade blocks contribute stronger to the deviations stemming from the A-matrix, 52% for the Eoracc–ICIOcc pair,

49% for Eoracc–EXIOBASEcc, but only 36% for EXIOBASEcc–ICIOcc. The higher importance of trade blocks regarding non-renewable rawmaterials

could be expected, given that the extraction of fossil fuels and metal ores are concentrated in only a smaller number of countries, leading to high
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F IGURE 5 SPLD results for the sector perspective, aggregation of all countries, threemodel pairs, 2010

amounts of materials passing certain international supply chains. Small deviations in the trade data of fossil fuels andmetal ores can thus translate

into notable differences in the non-renewable part of theMF.

4 DISCUSSION

In the context of increasing demand for robust resource use indicators by policymakers, our finding that per capitaMFdeviates only by 15%across

all GMRIO databases for a large number of economically important countries is important for raising confidence in the indicator. This result is

in line with earlier examinations of the carbon footprint. For example, Moran and Wood (2014) indicated a deviation of less than 10% for major

economies, once the greenhouse gas emissions satellite has been harmonized. Further, we observed high congruence across GMRIO frameworks

for the position a country occupies in international trade, that is, whether a country is a net exporter or net importer of rawmaterials. Still, the level

of per capitaMF assessed with different databases varies considerably for a number of countries.

Looking for the main causes of differences, our analysis illustrates that only small sections of the overall IO matrices are critical in determining

the differences inMFs. Although the importance of primary sectors has been stressed in earlier studies (Ewing et al., 2012; Schoer et al., 2013), our

analysis for the first time quantifies the numeric impact of these critical sectors and supply-chain sections. Following our results, further efforts of

different groups constructing and hosting GMRIO data sets should therefore focus on primary sectors and their representation in GMRIOmodels,

that is, on agriculture and forestry and the sectors receiving renewable raw materials for further processing, as well as the mining and quarrying

sector and their interlinkages with the basic metal, petroleum, and chemical sectors.

The SDA and SPLDmethods we applied required us to use a CC. NationalMFs therefore differ from those applying the GMRIOmodels with full

sector and country detail. Thus, parts of the deviations between the GMRIO models directly result from this aggregation (see Owen et al., 2014).

Earlier studies have argued that a higher level of detail in the material-intensive sectors is preferable to achieve robust MF results (see de Koning

et al., 2015; Piñero et al., 2015). Our results illustrate that the deviations between models become larger, when the sector resolution is reduced.

The number of countries located within the defined range of 15% decreased from 18 (out of 40) in the full detail to 15 in the aggregated CC. On

average, across countries and the threemodel pairs, deviations increasedby around19%causedby the aggregation effect, fromaround2.9 tons per

capita to around 3.5 tons per capita. On the one hand, aggregation could decrease discrepancies by averaging effects. On the other hand, merging

subsectors that are similar acrossmodelswith regard to their product composition and supply structurewith other sectors that have very different
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characteristics could increase deviations in results. Although not the prime focus of this paper, our result confirms earlier findings arguing for a

disaggregation of thematerial-intensive parts of the supply chain in order to decrease uncertainties inMF results.

The SDAand SPLD analyses based on a highly aggregated common sector classification allowed identifying areas of priority for further analyses

and database developments. Although not testable with the analytical methods applied in this paper, we assume that the overall findings with

regard to sector and supply-chain priorities to overcome differences in MFs also apply to the fully detailed GMRIOmodels. Also in the case of full

model detail, material extraction is allocated only to primary extraction sectors, thus deviations in supply structures of those sectors will have a

stronger effect on the resultingMFs compared to, for example, manufacturing or service sectors.

A full alignment of the existing GMRIO databases to a one-fits-all model is neither technically feasible nor desirable from amethodological and

policy application point of view. The various databases andmodels serve different purposes and applications and thus together offer a diverse per-

spective on resource use issues. For instance, EXIOBASE aims at covering a large number of environmentally sensitive activities, while Eora's focus

is on global coverage and the highest achievable level of sector detail. ICIO so far has been used mainly for the analysis of value added embodied

in trade and of carbon footprints and has focused on a thorough representation of trade flows. A clear documentation of the main construction

procedures and building blocks of GMRIO frameworks is essential to improve quality, comparability, and interpretability of the results; to reduce

uncertainties; and to increase the applicability in policy contexts.

There exist a number of areas, where a harmonization of procedures could improve the quality of results (Moran &Wood, 2014, compare also

the table with construction principles in chapter 1 in Supporting Information S1). These include

• main data sources and their classifications,

• reporting of meta data,

• methods to integrate source data into IOmodels, such as conversions into basic prices or of supply-use tables into IO tables,

• alignment of bilateral merchandise and trade in services statistics with national and global supply-use tables,

• agreed approaches for dealing with re-exports and re-imports,

• best-practice methods for developing the structure of the RoW region (see Stadler, Steen-Olsen, &Wood, 2014),

• methods to disaggregate environmentally sensitive sectors, and

• guidelines for themost suitable method of balancing the final table (Wiebe & Lenzen, 2016).

An effort addressing these issues and fostering the further development of data and methods would benefit from being facilitated by an inter-

national organization. In the past few years, theOECDhas hosted three expertworkshops onMF indicators (OECD, 2014, 2015a, 2018). The latest

workshop held in September 2017 concluded that the necessary expertise to pursue a harmonization of core procedures existed across the various

relevant institutions, which include research institutes, statistical offices, environmental authorities, and international organizations, but funding

to realize such a process is lacking. To date, it is unclear whether OECD or another international organization can become the custodian of such a

process or whether bottom-up efforts, such as, for instance, the global virtual multiregional input–output (MRIO) Laboratory (Lenzen et al., 2017)

can replace the current lack of international coordination.

Finally, it is important tonote that the thematic focuson rawmaterials of this paper leads tovery specific conclusions regardingeconomic sectors

and supply chains that should receiveprimeattention in reducing indicator uncertainties. The sameanalytical exercise could alsobeperformedwith

regard to deviations of other footprint-type indicators, such as the carbon footprint (seeWieland et al., 2018 for a SPLD-based assessment of EU's

carbon footprint). The priority areas for data alignment, that is, areas, where deviations ofmonetary data in theGMRIO system translate intomajor

differences in the footprint indicators, will likely be very different for other environmental categories. This is due to the fact that other sectors and

supply chains play a more important role than those highlighted for the case of material flows, for example, main greenhouse gas emitting sectors

such as the electricity sector in the case of the carbon footprint (seeOwen et al., 2014, 2016).

5 CONCLUSIONS AND OUTLOOK

The core objective of this paperwas to quantify the impact of data deviations in themulti-regional IOmatrix of a number of commonly usedGMRIO

databases on the results for the MF. We found that across all analyzed countries and material groups, data differences in the primary material

extraction sectors (i.e., agriculture, forestry, and mining) and in the subsequent processing sectors (such as food, petroleum, and chemicals; metal

products; and construction)were responsible formost of the difference inMF indicators. If GMRIOdatabases report differentmonetary values for

the deliveries of these sectors, bothwithin the domestic economy and in tradewith other countries, this results in significant differences in theMF

indicator because of the large amount of materials embodied in the respective supply chains. In contrast, data differences in sectors, which receive

materials at later stages in the supply chain, such as manufacturing or services, generally have only a minor impact on the demand-based material

flow indicator. This pattern was observed for all selected countries, that is, developed countries and emerging economies alike.
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For further research onMFs, we conclude that thematerial-intensive sectors and supply chains should be a priority in the further development

ofGMRIOmodels and databases that calculateMF indicators. In addition to further aligning construction procedures inmonetaryMRIOmodeling,

one future option is to exploit the growing body of global data sets in physical units, which allow tracing flows of primarymaterials in physical units

(Bruckner, Giljum, Fischer, Tramberend, &Börner, 2018; Ewing et al., 2012). Futurework could testwhether detailed and reliable physical accounts

for the first stages of processing can be established on the global level, allowing circumventing those sectors in the GMRIO databases that were

identified as causing the highest deviations inMFs.

These development processes need to be pursued expeditiously in order to exploit the full potential of material flow accounting indicators as

a useful and practical evidence base for an environmental policy approach that addresses the complexity and interconnectedness of the global

economy and its relationship to environment and natural resources. This will help the research community to address the information needs of

policy makers about the environmental effects of complex international supply chains and cause–effect relationships in an increasingly globalized

world economy.
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