

U N I K A S S E L V E R S I T 'A' T

A water scarcity and water quality footprint on the example of two Lithium mines

Anna C. Schomberg & Prof. Stefan Bringezu

Center for Environmental Systems Research, Universität Kassel

19. June 2019

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

F of Li-ion battery

References

WANDEL OF

Key Global Sustainability Challenges

Water & Energy

FIGURE 2: Water-Energy-Nexus according to Bauer (2015). Annual water withdrawals for cooling purposes in electricity generation according to Flörke et al. (2013).

WF Concept

Water & Energy

Water & Energy

Energy needs Water needs Energy

FIGURE 2: Water-Energy-Nexus according to Bauer (2015). Annual water withdrawals for cooling purposes in electricity generation according to Flörke et al. (2013).

WF Concept

WF Lithium mining

WF of Li-ion b

References

Energy & Mining

ESEE 2019: WF Lithium mining

Schomberg

Distribution and future expansion

FIGURE 6: Distribution and future expansion of Lithium mines as reported in the MiningIntelligence provided by InfoMine according to Schomberg & Bringezu 2019 [Unpublished]. Water stress 2010 and 2050 derived from the hydrological modelling framwork WaterGAP3.

Schomberg

Lithium mine types

Water & Energy

- refinery product: Lithium carbonate equivalent (LCE)
- geological Lithium sources
 - hard rock: petalite, spodumen, lepidolithe, eucryptit, hectorit (mostly magmatic)
 - brines: shallow groundwater with enriched concentrations (extraction so far only from salars)
- world resources (in ranking order): Bolivia, Chile, Argentina, USA, China

FIGURE 7: Share of hard rock and brine mining in global Lithium production according to Braga et al. (2014).

Definition

Assessment of the on-site and remote impacts on water availability for human and nature caused by human water usage for Lithium mining (Lithium-ion battery production) in a spatially explicit way with the means of Life Cycle Assessment

WF Concept

WF Lithium mining

WF of Li-ion bat

References

Spatially explicit

Schomberg

Inventory: Hard rock mining

FIGURE 10: Flow chart modified according to Margarido et al. 2014 (red box).

FIGURE 11: Flow chart modified according to Meshram et al. (2014) (red box).

Water Quality: VDV

VDV =	Substance _i [mg]		
	$\overline{c_1\left[\frac{mg}{L}\right] - c_0\left[\frac{mg}{L}\right]} = c_0\left[\frac{mg}{L}\right]$	$\frac{\overline{ng}}{L}$]	

	process output	threshold WHO	background concentration	VDV
	[mg/ kg LCE]	[mg/L]	[mg/L]	[L]
Carbonate	35143	500	no data	70
Sodium, ion	26943	200	no data	135
Sulfate	56117	250	no data	224

Emission to water from the process "Leaching of spodumene with sulfuric acid" according to ecoinvent 3.1, localisation: Greenbushes Lithium mine

WF Lithium mining

00000000

Water Quality: Potential for AMD

- AMD = Acid Mine Drainage
- caused by weathering of rock that is exposed to water and oxygen if sulfide minerals react to sulfuric acid
- common sufide minerals: pyrite (FeS₂), markasite (FeS₂), chalkopyrite (CuFeS₂), galena (PbS)...
- can be extremely accelerated under microbial activity
- impacts: lowering of pH value, leaching of heavy metals

Water & Energy

Schomberg

ESEE 2019: WF Lithium mining

Schomberg

Water Quality: Potential for AMD

Water Quality: Potential for AMD

References

Water & Energy

- BAUER, D. (2015). Water-Energy Nexus : Challenges and Opportunities. (Cit. on pp. 3–5).
 - Braga, P., França, S. & Junior, C. (2014). How big is the lithium market in Brazil ? *Impc 2014*, 1–10 (cit. on p. 9).
 - FLÖRKE, M., KYNAST, E., BÄRLUND, I., EISNER, S., WIMMER, F. & ALCAMO, J. (2013). Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: A global simulation study. *Global Environmental Change*, 23, 1, 13pp. DOI: 10.1016/j.gloenvcha.2012.10.018 (cit. on pp. 3–5).
 - MAUPIN, M., KENNY, J., HUTSON, S., LOVELACE, J., BARBER, N. & LINSEY, K. (2014). Estimated Use of Water in the United States in 2010. DOI: http://dx.doi.org/10.3133/cir1405.67pp. (Cit. on p. 7).
 - MESHRAM, P., PANDEY, B. D. & MANKHAND, T. R. (2014). Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review. *Hydrometallurgy*, 150, 192–208pp. DOI: 10.1016/j.hydromet.2014.10.012Review (cit. on p. 16).
 - RIETVELD, E., BOONMAN, H., TOON, H. VON, HAUCK, M. & BASTEIN, T. (2018). Global Energy Transition an Introduction and Circular. 52pp. (Cit. on p. 6).

References