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ABSTRACT: Harvested biomass is linked to final consumption
by networks of processes and actors that convert and distribute
food and nonfood goods. Achieving a sustainable resource
metabolism of the economy is an overarching challenge which
manifests itself in a number of the UN Sustainable Development
Goals. Modeling the physical dimensions of biomass conversion
and distribution networks is essential to understanding the
characteristics, drivers, and dynamics of the socio-economic
biomass metabolism. In this paper, we present the Food and
Agriculture Biomass Input−Output model (FABIO), a set of
multiregional supply, use and input−output tables in physical
units, that document the complex flows of agricultural and food products in the global economy. The model assembles
FAOSTAT statistics reporting crop production, trade, and utilization in physical units, supplemented by data on technical and
metabolic conversion efficiencies, into a consistent, balanced, input−output framework. FABIO covers 191 countries and 130
agriculture, food and forestry products from 1986 to 2013. The physical supply use tables offered by FABIO provide a
comprehensive, transparent, and flexible structure for organizing data representing flows of materials within metabolic networks.
They allow tracing of biomass flows and embodied environmental pressures along global supply chains at an unprecedented
level of product and country detail and can help to answer a range of questions regarding environment, agriculture, and trade.
Here we apply FABIO to the case of cropland footprints and show the evolution of consumption-based cropland demand in
China, the E.U., and the U.S.A. for plant-based and livestock-based food and nonfood products.

■ INTRODUCTION

In the context of the Paris Agreement, the UN Sustainable
Development Goals (SDGs) and related resource efficiency and
circular economy agendas, the increasing displacement of
environmental impacts from primary production through global
trade has become a prominent issue in international policy
debates.1 Traceability tools are needed to support both
stakeholders and policy makers in monitoring and governing
global trade-flows and their undesired impacts.2

Traceability tools should provide results, which are trust-
worthy, comprehensive, and detailed enough to be able to guide
policy response.We argue in this work that current global supply
chain databases, in the form of multiregion input−output
(MRIO) models, are often inadequate (a) to account for the
specific environmental impacts associated with a large range of
different agricultural products, and (b) to capture the physical
basis of the food system. Farming, grazing, and forestry activities
are central in many sustainability challenges across health, water,
energy, and biodiversity. Gaining an accurate picture of the

physical metabolism of these goods through the global
economy, i.e., the networks of processes and actors that convert
and distribute food and nonfood goods (metabolic networks), is
arguably a prerequisite for addressing biomass goods in the
context of sustainability goals.
Material flow analysis (MFA)3 has developed into an

important framework to study metabolic networks and support
the governance of societal transitions. MFA aims at quantifying
the biophysical dimension of socio-economic activities4 and
identifying options to reduce their negative environmental
impacts, such as global warming.5 Physical supply use tables
(PSUT) provide a comprehensive, transparent, and flexible
structure for organizing data on material flows within metabolic
networks. The groundwork for PSUTs was laid by Kneese et al.6
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and their application of the material balance approach to
economic analysis. In the meantime, pilot PSUTs and physical
input−output tables (PIOT) have been presented for a number
of countries and regions, including the European Union, Austria,
Germany, Finland, Italy, The Netherlands, Japan, and
China.7−10 PSUTs are the basis for compiling PIOTs and
provide a detailed description of the physical flows between the
natural and the socio-economic system.
Biobased inputs, such as crops and timber, are supplied by the

natural environment and mostly introduced into the economic
system by the agriculture and forestry sectors. Processing
industries, such as paper and food industries, use and transform
these inputs of natural resources to generate products for
intermediate or final consumption. Residuals are generated by
both industry and households, and are either treated further
within the economy or released back to the environment.

In recent years, environmentally extended multiregional
input−output (EE-MRIO) approaches have been widely used
to study physical flows of materials induced by production and
consumption activities in the global economy. Despite the
significant progress,11 the robustness of MRIO-based calcu-
lations of global physical biomass flows has been questioned.
Three main problematic areas have been identified.12−15 First,
the monetary structure of the economy does not always
represent the quantities of physical product flows correctly.
Due to price variations of product flows between different
customers, the assumption of proportionality betweenmonetary
and physical flows can lead to over- or underestimations.16,17

Second, the limited detail of monetary input−output tables
results in a grouping of products with differing material and
environmental properties and use structures into homogeneous
sectors.13 Third, there exist mismatches between agricultural

Figure 1. Flowchart illustrating the data sources and processing steps involved in building FABIO. (CBS = commodity balance sheets, BTD = bilateral
trade data, SUT = supply use table, MRIOT = multiregional input−output table).
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and forestry statistics reported in physical units on the one hand,
and macro-economic production statistics in monetary units
however, for example due to different system boundaries.18

In order to reduce uncertainties arising from the above-
mentioned limitations of input−output models, a number of
studies have suggested moving from sector-level economic data
toward a more detailed physical data basis. For example, Ewing
et al.19 developed physical use accounts for agricultural products
which model the first stage of agricultural supply chains in
physical instead of monetary units and allocate crops to the first
users reflecting detailed international trade and type of the first
use provided by FAOSTAT. This approach was further
developed by Weinzettel and Wood20 and applied to calculate
footprints for biodiversity,21 scarce water use,22 and net primary
production.23 A similar approach is applied by Croft et al.,24 but
going one step further for selected processed products such as
vegetable oils. Liang et al.10 presented a 30-sector, mixed-unit
PIOT for China to investigate material flows by aggregated
product groups.
All these hybrid IO models rely on monetary IO data to track

biomass products from the first (or second) use stage to the final
consumers. A growing number of researchers worldwide,
however, argue that describing the structure of material
conversion and distribution networks in physical terms, i.e., by
means of detailed PSUTs, provides a beneficial basis for the
analysis of material flows in metabolic networks.25,26 While
Kastner et al.27 developed a trade accounting approach that
tracks crops embodied in international trade purely based on
physical data, they convert all products into primary crop
equivalents. The same is the case for the Trase.earth project,28

which does not use an input−output framework but instead is
collecting detailed data on production and trade of critical
commodities, such as soy and palm oil, pursuing a bottom-up
approach to providing details on key countries and commod-
ities. A system of physical supply use or input−output tables
instead transparently describes all intermediate uses and
conversion processes, thereby retaining flow information at
each step of the supply chain.
In this work, we present the Food and Agriculture Biomass

Input Output model (FABIO), a global set of trade-linked
PSUTs and PIOTs capturing detailed supply chain information
for 130 raw and processed agricultural and forestry products
covering 191 countries and one rest of world region from 1986
to 2013. By using agricultural statistics from FAOSTAT, we
obtain a considerably higher level of product and process detail
compared to any available MRIO database and, moreover, cover
supply chains in physical units, thereby alleviating the
uncertainties introduced by the homogeneity, proportionality,
and consistency assumptions applied in IO analysis.
We demonstrate this physical MRIO model applying it to the

case of the cropland footprint of China, the E.U.-28, and the
U.S.A. We reveal differences in trends and composition of
cropland footprints and import shares over a period of nearly
three decades, and highlight the role of allocation when tracing
physical flows along processing steps.

■ OVERVIEW OF THE FABIO MODEL
Figure 1 illustrates the approach used to build FABIO. The
procedure is described in detail in the following sections. First,
we give a detailed overview of all data sources used to construct
FABIO. In the Estimating Missing Values section, we then
describe how we deal with data gaps and inconsistencies. After
that we elucidate how supply and use tables are built based on

the available data. Finally, we show how national PSUTs are
trade-linked and converted into a symmetric multiregional
PIOT.

Comparison with other MRIOs. The resulting FABIO
database offers PSUTs and PIOTs with an unprecedented level
of detail for agriculture and food products. In most standard IO
tables, such as those provided by EUROSTAT, and also in the
WIOD, ICIO, and Eora MRIO databases, these products are
represented using 1−10 aggregate categories, while FABIO
features 127 distinct products (see Supporting Information, SI,
Table S.1). GTAP and EXIOBASE distinguish 21 and 27
agriculture and food products, respectively. We note that Eora
offers more detail for some countries, the U.K. representing an
extreme case with 80 agriculture and food products and 1022
products in total. Furthermore, FABIO provides more detail
than most other MRIOs also regarding country detail and time
coverage. Most importantly, it documents product flows in
physical instead of monetary units. However, other parts of the
economy are not represented, which implies limitations for the
tracking of nonfood commodities such as biofuels, wood, and
fibers. These caveats are further elaborated in the Discussion
Section.

Open Science. All data sets and R scripts are available to the
research community under the GNU General Public License
(GPL-v3) via GitHub (https://github.com/martinbruckner/
fabio) and the open science platform Zenodo,29 which is fully
compliant with the FAIR guiding principles30 for the provision
and management of open data in scientific research. We hope
that openness, transparency, and sharing of code contributes to
further advancements and invite researchers to test and
scrutinize our codes and results.

■ METHODS AND DATA
In this section, we explain which data sources were used and how
they were processed to build multiregional PSUTs and PIOTs
for agriculture, fish, forestry, and food products.

Data Sources. Most of the data used for constructing the
FABIO supply and use tables are provided by FAOSTAT, the
Statistical Services of the Food and Agriculture Organization of
the United Nations.31 To build FABIO we used data from the
following FAOSTAT domains:

• Production, Crops
• Production, Crops processed
• Production, Live animals
• Production, Livestock primary
• Production, Livestock processed
• Trade, Crops and livestock products
• Trade, Live animals
• Trade, Detailed trade matrix
• Commodity balances, Crops primary equivalent
• Commodity balances, Livestock and fish primary

equivalent
• Forestry production and trade
• Forestry trade flows

Additionally, fodder crop production data (previously part of
the aggregated item “Crops Primary (List)” in the Production
domain) are required, but are no longer available from the
FAOSTATWeb site. These data were often estimated, and as we
understood FAO has become hesitant to publish such estimated
data. However, we decided it was valid to continue using these
estimates as (a) some estimate is better than estimating the
amount of fodder crops at zero and (b) due to the way FABIO is
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constructed these estimates will be aligned and constrained with
other data sets to inform the final FABIO model result. In order
to replicate FABIO, it is necessary to request these data from
FAOSTAT.
Global statistics on capture and aquaculture fish production

were retrieved from FAO’s fishery division.32 UNComtrade, the
international trade statistics database of the United Nations
Statistics Division,33 provides bilateral trade data. We use the
Comtrade database for data on bilateral fish and ethanol trade
from 1988 to 1994. Data for all other years are sourced from
BACI, a reconciled and harmonized version of the UN
Comtrade database, which is available for 1995 to 2017.34 The
trade data are balanced as described below.
Production data for ethanol from agricultural sources are

reported by FAOSTAT under the name Alcohol, nonfood.
However, large data gaps induced us to use production data on
ethanol and biogasoline from both EIA35 and IEA.36

The data structures of all data sets were harmonized,
particularly regarding their country and commodity classifica-
tion. We defined 130 commodities, 121 processes, and 191
countries plus one rest of world region to be covered in FABIO.
The final classifications are given in the SI (see Tables S.2, S.3,
and S.4).
The Commodity Balance Sheets (CBS), available from

FAOSTAT, are the core of the FABIO PSUTs. The CBS
provide detailed and comprehensive supply and use data for
primary and processed agricultural commodities in terms of
physical quantities by matching supply (domestic production,
imports, and stock removals) with utilization (food, feed,
processing, seed, waste, other uses, and exports). Other uses
“refer to quantities of commodities used for non-food purposes,
e.g., oil for soap [···]. In addition, this variable covers pet food.”31

Changes in moisture content, which may occur for many
products between extraction and use, are neglected. The CBS
database structure is designed to cover each country’s entire
agricultural and food processing sector.37 About 200 different
primary and processed crop and livestock commodities can be
linked to form a consistent commodity tree structure using
technical conversion factors.38

While particularly the use accounts are an indispensable
source of information for the development of PSUTs, an
unavoidable limitation of these data is that for many cases crops
and derived products are combined into a single CBS by
converting products into primary equivalents. For example, the
CBS for wheat and products comprises also trade and
consumption of bread and pasta measured in wheat equivalents.
Disaggregating primary from processed products, thus,
represents an option for future refinements. However, we do
not expect differentiating primary and processed products to
have a significant influence on the results when using FABIO as a
footprinting tool,20 but it would be of relevance when linking
FABIO to data from economic accounts.
As other domains of FAOSTAT (e.g., Trade and Production)

give the actual weight of products, units had to be converted into
primary equivalents where applicable. This was done using
country specific technical conversion factors (TCF) for 66
products and global average TCF for 404 products, which for
example give the kg of wheat required to produce an average kg
of bread.38

Trade data for crops and crop products, livestock and
livestock products, timber, and fish are organized in different
data domains of the FAO. We therefore harmonized their data
structures and integrated them into one bilateral trade database

(BTD). To reconcile discrepancies, i.e., the case that A’s
reported exports to B disagree with B’s reported imports from A,
only import data were used. We assumed that the importer will
rather know the correct origin of a traded commodity, than the
exporter the correct final destination.Moreover, import statistics
use to be more complete as customs have comprehensible
interest in thorough data collection for tax purposes. In the case
of missing records for a country we obtained missing trade data
from “mirror” statistics, i.e., trade partners’ data.

Estimating Missing Values. Data gaps are a common
problem in any heavily data-dependent research work. We used
several approaches to estimate missing data.

Commodity Balances. The CBS database does not cover
some of the commodities included in the FABIOmodel, i.e., live
animals, fodder crops (grasses, forages, and silage from
cropland), grazing (grasses and hay from grasslands), and
timber. Therefore, commodity balances had to be built based on
alternative sources. We estimated grazing production based on
ref 39. Production data for all other missing commodities as well
as trade data for live animals and timber are available from
FAOSTAT. Fodder crops and grasses are assumed not to be
traded internationally. Low prices and the consequent
disproportionate transportation costs support this assumption.
For simplicity, stock changes, seed use, and waste were assumed
to be zero. Domestic use of live animals is at large assigned to
food processing (i.e., animal slaughtering), fodder crops and
grazing to feed use, and timber to other uses.
The CBS and bilateral trade data for Alcohol, nonfood were

updated with production data from IEA and EIA (using the
highest value respectively) and trade data from Comtrade/
BACI.
For some countries, not included in the CBS domain (namely:

Singapore, Qatar, Democratic Republic of the Congo, Bahrain,
Syrian Arab Republic, Papua New Guinea, Burundi, Libya,
Somalia, Eritrea, Timor-Leste, and Puerto Rico), all commodity
balances were estimated based on available production, seed use,
and trade data. FAO has stopped reporting the seed use in the
production domain of FAOSTAT. Thus, for future updates
seed-production ratios reported in past years or for other
countries will be taken. While production for seed is important,
it is not especially large in physical terms. On average globally,
1.4% of crop production is used for seed in the following year,
though this ranges between as much as 5.7% for pulses to 0.01%
for vegetables. Processing requirements, e.g., the rapeseed used
for rapeseed oil production or the sugar cane used for sugar
production, were estimated for each commodity based on
production data for the derived products and the country
specific TCF. If we then found data gaps for coproducts, e.g.,
molasses from sugar production, we imputed these data using
again the respective TCF.
In the CBS, a certain commodity might be reported for a

country most of the time, but with a few years missing. While
production and trade data are available from other data domains
of FAOSTAT throughout the time series, the use structure of the
commodities is only provided by the CBS. In their absence, we
performed linear inter- and extrapolation of the respective use
structures. In total, for the case of the year 2013, 15 234
commodity balances were reported for the 191 countries
included in FABIO, and 4271 were estimated (see Tables S.5
and S.6), representing less than 0.5% of the covered global
product supply.

Bilateral Trade. The BTD was reconciled to receive a
bilateral trade matrix bc

rs in the format countries-by-countries (r
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× s) for each commodity c and year as described in the
section Data Sources. The data set, as provided by FAOSTAT,
reveals significant gaps and discrepancies with the total import
and export quantities reported in the CBS. We followed a
multistep approach to estimate a comprehensive set of bilateral
trade data, which is in accordance with the CBS:

• We first derive a BTD estimate by spreading exports for
each commodity over all countries worldwide according
to their import shares. The elements of B′ for a specific
crop c and a country pair r, s are derived by bc′rs = impc

r/
impc × expc

s

• We repeat this procedure, but spreading imports for each
commodity over all countries worldwide according to
their export shares: bc″rs = expc

s/expc × impc
r

• We derive the average of the two estimates b̅c
rs and

proceed.
• We calculate the difference between the total exports of

crop c from country r documented in the BTD and those
reported in the CBS data set.

• We populate the gaps in B, i.e., those fields that are N/A,
with the corresponding values from B̅ up-/down-scaling
them to meet the target export sum for each commodity
and each exporting country as reported in the CBS.

• We balance the resulting bilateral trade matrices one
product at a time using the RAS biproportional balancing
technique40 to ensure the original total imports and total
exports are matched.

The resulting bilateral trade matrix is fully consistent with the
import and export totals given by the CBS per country and
commodity. In order to give an idea of the potential
uncertainties, we show the discrepancies between the different
FAO data sets, which are overcome with the help of the RAS
method, in Table S.7 in the SI.
Building the Supply Tables. Populating the supply table is

straightforward, as production data is available from FAOSTAT
and can be attributed to a specific process. First, we identify the
processes, supplyingmore than one output, i.e., joint products or
byproducts. We find a reasonable list of multioutput processes
such as the crushing of oilseeds, the production of sugar,
alcoholic beverages, and livestock products (see Table S.9). We
insert the compiled production data for each process-item
combination into a supply table. Ten livestock commodities are
supplied by multiple processes. Production values of those have
to be divided between the respective processes:

• Milk and butter from 5 different animal groups are
aggregated into one CBS item. At the same time,
FAOSTAT reports detailed production data for fresh
milk by animal type (e.g., cattle, goats, and camels). These
are used to split the aggregates over the supplying animal
sectors in FABIO.

• The same is true for meat, hides, and skins, where the CBS
provide less detail than the FAO’s production statistics.
We use the latter to allocate meat supply to the detailed
slaughtering processes.

• Slaughtering byproducts such as edible offal, animal fats,
and meat meal are split among the animal categories
according to their respective share in overall meat
production.

We obtain one supply table S with i commodities by p
processes for each country and year.
Building the Use Tables. The Commodity Balance Sheets

distinguish the following uses: exports, food, feed, processing,

seed, waste, and other uses. Moreover, we invert the supply item
stock removals, thereby converting it into the additional use item
stock additions.
Waste can be treated in a physical accounting framework in

different ways.41 On-farm waste of biomass can be regarded as
an output flow that would either be returned to the environment
or serve as an input to other processes. Such an accounting
perspective enables assessment of the actual physical flows
within metabolic networks.42 Alternatively, waste flows can be
allocated to the process where the waste occurs, thus considering
losses synonymous to an own use. As opposed to the tracking of
actual physical flows in option one, the second option allows for
the tracking of embodied flows, which is required for
consumption-based (or footprint) accounting.43 In this first
version of FABIO, we decided to implement the latter option,
but plan to release an alternate version with waste streams
reported as out-flows as well.
Seed is considered an own use of the process which later

harvests a crop. Exports, stock additions, food, and other uses are
considered final demand categories. Exports will later be spread
over the receiving countries, while food, stock additions and
other uses together comprise the final demand categories of
FABIO.
In the following, we describe the allocation of feed and

processing use.
Allocation of Processing Use. Processing uses are allocated

to the respective processes distinguishing between several cases.
Single-Process Commodities. Commodities that are only

processed by one single process include oil crops (processed in
the respective oil extraction processes), hops (used in beer
production), seed cotton (separated into cotton lint and cotton
seed in the cotton production process), and live animals
(processed by the respective slaughtering sectors). Given
processing quantities are directly allocated to the respective
processes.

Multipurpose Crops.Crops that are used by several processes
are allocated by estimating the input requirements to each
process based on technical conversion factors giving the
conversion efficiencies for food processing. The use of product
i in process p is determined by ui

p =∑j(sj
p × ϕij

p), where sj
p is the

supply of product j by process p and ϕij
p is the conversion

efficiency from product i to product j in process p. For example,
ϕij
p = 0.5 indicates that process p converts each ton of product i

into 0.5 tons of product j. This approach is used to estimate the
use of sugar crops in sugar production, rice in ricebran oil
extraction, maize in maize germ oil extraction, and grapes in
wine production.

Ethanol Feedstock. For Brazil and the U.S.A., responsible for
over 85% of the global ethanol production in 2014,36 the
feedstock composition is known. Brazil uses sugar cane, while
the ethanol industry of the U.S.A. is mainly based on maize, with
less than 2% coming from sorghum, barley, cheese whey, sugar
cane, wheat, and food and wood wastes.44 For all other
countries, i.e., less than 15% of global ethanol production,
feedstocks are estimated based on the availability of useful
feedstock crops and their respective conversion rates.

Alcoholic beverages. Crops are allocated to the processes
which supply alcoholic beverages by solving an optimization
problem. We have given the national production of beer and
other alcoholic beverages sj, the total available feedstock supply
ui which was not allocated already to other processes, and the
conversion efficiencies ϕij, e.g., from barley to beer. With these
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inputs, we solve the following constrained least-squares

optimization problem:

i

k

jjjjjj
i
k
jjjj

y
{
zzzz

y

{

zzzzzz
s s

u umin ( )
2

2∑
ϕ
− ̃

̅
+ − ̃

where,

s u( )j
i

n

ij ij
1

∑ ϕ̃ = ̃ ×
=

s.t.

u u 0.1
j

m

ij i
1

∑ ̃ = ±
=

Figure 2. Plant and animal-based food and nonfood cropland footprint of China, the EU-28, and the U.S.A., 1986−2013; Top: overall footprint;
center: difference due to allocation method (with positive values meaning higher footprints based on value allocation); bottom: share of imports in the
footprint
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and receive a table of crop use per alcoholic beverage and
country, which we insert into the use table.
Allocation of Feed Use. The quantities of each crop used as

animal feed are reported by FAOSTAT. This feed supply is
allocated to the 14 animal husbandry sectors specified in FABIO
(Table S.3) according to their feed intake requirements. The
procedure is explained in the following three steps:

• Feed supply: Retrieve detailed data on feed supply from
FAO in fresh weight, and convert them into dry matter
(DM).

• Feed demand: Calculate feed demand of 14 livestock
groups in tons of DM.
(1) Cattle, buffaloes, pigs, poultry, sheep, and goats:

Bouwman et al.39 published estimates on the feed
demand in kg DM per kg product (e.g., milk, beef,
fat) for 1970, 1995, and 2030, differentiating
specific dietary requirements and feed composition
(i.e., feed crops, grass, animal products, residues,
and scavenging) for livestock in 17 world regions.
We interpolate the given feed conversion rates to
get year-specific values and multiply them with the
reported production quantities of animal products
to get the total feed requirements per product. For
this step, it was important to consider trade with
live animals in order to correctly assign feed
demand to the country, where the animals were
raised.

(2) Horses, asses, mules, camels, other camelids,
rabbits and hares, other rodents, and other live
animals: Krausmann et al.45 provide average feed
demand coefficients for the above listed animal
groups in kg DM per head, which are multiplied
with the reported livestock numbers to calculate
total feed requirements.

• Match supply and demand: We then balance the
generated feed requirements per country to match the
reported feed supply by proportional up- or downscaling.
Finally, we convert the quantities into the fresh weight of
every single feed crop.

Trade-Linking. Once the supply and use tables for all
countries are filled, they are linked into multiregional supply and
use tables. The multiregional supply table S with the dimensions
{r, i}× {s, p} contains zeros at the trade blocks (where r≠ s) and
is filled with the domestic supply tables where r = s.
The national use tables are trade-linked by spreading the use

of a product i in a process p in country s over the source countries
r of that product: uip

rs = uip
s · hi

rs, where hi
rs = si

rs/si
s and si

rs is the total
supply of product i in country s sourced from country r. Finally,
we receive a matrix U with the dimensions {r, i} × {s, p}.
Constructing Symmetric IO Table. The transformation

from supply use tables into symmetric input−output tables
requires assumptions on how to deal with multiple-output
processes, i.e., a process supplying more than one product such
as, e.g., soybean crushing delivering soybean oil and cake. The
issue of how to allocate process inputs to outputs is discussed
both in the fields of input−output economics and life cycle
analysis, with clear parallels in the allocation approaches.46,47

When applying the widely used industry technology assumption
for the transformation of rectangular process-byproduct SUTs
into symmetric product-byproduct IOTs, process inputs are
allocated to its respective outputs according to the supply shares
documented in the supply table. For example, in the case of

soybean crushing, the input quantities of soybeans are allocated
to the outputs of oil and cake.We do this by deriving the product
mix matrix or transformation matrix T = g−̂1S, where ĝ is a
diagonalized vector with the row sums of S, and multiplying the
use and the transformation matrix Z = UT.
Assuming PSUTs in weight units, this allocates inputs

according to the relative weight of the outputs. In order to
facilitate analyses of the economic drivers of resource flows, we
derive also a version that uses the relative economic value for the
allocation. We therefore convert the supply tables into monetary
values (based on price information from FAOSTAT and IEA)
before deriving the transformation matrix as explained above.
Thereby, we switch from mass to value allocation, i.e., allocating
the inputs of each process to its outputs in relation to their value
rather than their weight.
This allows us to test the effects that the different allocation

decisions have on the resulting PIOTs. This is particularly
relevant for products from processes that produce outputs with
highly varying value-weight ratios. It should be noted that, in
accordance with the requirements of a specific research
question, allocation could be performed also according to
supply shares in other units, for example based on the carbon,
nitrogen, phosphorus, or protein content.

■ RESULTS
Heatmaps of the resulting physical MRIO table for 2013 can be
found in the SI. We extend the FABIO model by cropland use
data sourced from FAOSTAT31 and calculate exemplary
cropland footprint results for China, the EU-28, and the
U.S.A., distinguishing plant-based and livestock-based products
for food and nonfood uses from 1986 to 2013. We apply both
versions of FABIO, i.e., using mass and value allocation. Figure 2
presents the results derived with the FABIO model based on
mass allocation (in the upper part), the difference between mass
and value allocation (in the middle part), and the share of
imports in the overall footprint (in the lower part) based onmass
allocation. The figure reveals characteristic patterns and distinct
trends for these three major agricultural producer and consumer
regions. While animal source foods take the highest but
declining share in the E.U. and the U.S.A. cropland footprint,
their place is still only second after plant-based food in China,
albeit showing a rapid increase throughout the time series. Other
uses, i.e., mainly industrial nonfood uses, are particularly
increasing in China and the U.S.A. In the E.U., we see a shift
from animal-based to plant-based nonfood products. The
middle part of Figure 2 illustrates the impact of using mass or
value allocation for byproducts in the construction of FABIO on
the cropland footprints. While the overall footprint only changes
slightly, the composition changes significantly. In China and the
E.U., livestock products have a smaller footprint when using
value allocation. This is mainly due to the lower price of soybean
cake (used as animal feed) as compared to soybean oil.
Accordingly, nonfood uses of crop products such as soybean oil
receive a higher share of the land inputs. In contrast, the
products from the livestock sector used by nonfood industries,
for instance hides and skins, are usually cheaper than those
intended for human consumption. China constitutes an
exception, as prices of animal hides are driven by the high
demand of industries and often exceed meat prices, thus shifting
more of the inputs to hides when switching from mass to value
allocation. The relative impact of allocation choice is significant,
with a maximum of 59% of the total impact of the food-livestock
product group, 63% of the other uses of livestock products, and
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38% of the other uses of crops being affected by choice of
allocation. The evolution of import shares, shown at the bottom
of Figure 2, reveals an increasing reliance on imports for China’s
use of livestock products and crops for other uses. The E.U., at
the same time, reduced import dependence for most product
groups, albeit starting from high levels. The U.S.A. import share
of crop products for other uses declined by roughly half, while
increasing slightly for the other product groups.
For a first comparison of our results with other land footprint

studies, we amend the comparison of net-trade flows of
embodied cropland for China in 2004 presented in Hubacek
and Feng,48 including numbers from Qiang et al.,49 Kastner et
al.,17 Meyfroidt et al.,50 Weinzettel et al.,51 and Yu et al.,52 with
results generated with FABIO (see Figure 3).
FABIO is evidently very much in line with other physical

accounting methods, although applying the IO method. We
could determine net-imports of 21 Mha cropland, both with
mass and value allocation. This, however, could change when
further tracing the supply chains of nonfood uses (e.g., the
further export of derived cotton/leather products such as
clothing and furniture). Currently, FABIO does not cover
nonfood manufacturing industries (see Discussion section). In
total, 27 Mha of cropland were embodied in other uses of
agricultural products in Chinese industries in 2004. Many of
these might produce for export markets, thus reducing China’s
net-imports. Yet, net-exports of 17 Mha as shown by Yu et al.52

could not be reached, even if China exported all of its
manufacturing products. A detailed model comparison is
beyond the scope of this work and is being prepared separately.

■ DISCUSSION

Limitations and Next Steps. Estimating Feed Production
and Demand. Achieving accurate estimates of feed production
and demand is extremely challenging. On the production side,
crops grown for feed are reported inconsistently, or not at all, to
FAO. In some cases a crop is grown for feed and reported, in
other cases a crop is used for both human consumption and
animal feed (e.g., cereal grains are used for food and the straw
used for feed), and in other cases crops may be grown for feed
but not reported. On the consumption side, there are no

international statistics on the total herd feed consumption from
roughage (incl. grazed biomass) versus concentrate feed. Cattle
and sheep can vary widely in their feed demands, in the extreme
by perhaps up to an order of magnitude (compare a small
undernourished street cow in urban India, foraging opportun-
istically with little provided feed, to a prizewinning Austrian
dairy cow). FABIO attempts to use the best available data with
global coverage39,45 and reconcile feed production and feed
demand estimates into a mass-balance consistent model, but
nevertheless it must be kept in mind that estimates of feed
demand remain a source of uncertainty in the results.

Model Uncertainty. The global PSUT provided by FABIO is
an underdetermined system, i.e., not all data elements in the
result are explicitly informed by input data. As described above
in the Methods, some elements are inferred by disaggregating or
pro-rating more aggregate totals. Thus, every element of the
global PSUT output is best understood not as a “true” value but
rather as an estimate which is subject to some degree of
uncertainty. We expect lower uncertainty for crops and derived
products such as vegetable oils, as for these parts of FABIO we
could draw on extensive FAOSTAT data with only minor needs
for estimates or assumptions. The uncertainty for animal feed,
particularly grasses, is presumably higher, as this module of
FABIO is widely based on incomplete data, hence requiring
comprehensive estimation algorithms. The number of com-
modity balances reported and estimated for each country and for
each commodity for 2013 are given in Tables S.5 and S.6 in the
SI. Formalizing or estimating this uncertainty remains an open
task for future versions of the model. For example, standard
deviation can be used withMonte Carlo methods to estimate the
variance of model results.53,54

Linear Dependency. The high similarity in the feed input
composition among monogastric as well as among ruminant
animals results in some degree of linear dependency between the
columns of the input−output table Z, thus impeding
invertibility. The Leontief inverse therefore can be approxi-
mated using the power series expansion, i.e., L = I + A + A2 + A3

+ ... + A∞, where I is the identity matrix and A is the technology
matrix, which is generated by the equation A = Zx−̂1, where x̂ is
the diagonalized vector of total production output. Alternatively,

Figure 3.Comparison of China’s net-trade with embodied cropland in 2004. Note: The results in Yu et al.52 are based on 2007 data, while all others are
2004 data.
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the matrix becomes invertible by making an incremental change
(e.g., − 1e − 10) to those values at the main diagonal of the
Leontief matrix I − A which are exactly equal to one. For the
results presented here, we used the latter approach.
Industrial Uses. The final demand category other uses of

FABIO comprises all industrial nonfood uses. Further trade and
final consumption of these products cannot be traced based on
FAO data, therefore these supply chains are truncated at the
place where a commodity enters a nonfood industry. As shown
by Bruckner et al.,55 nonfood products are responsible for about
one-quarter of the EU’s cropland footprint, a share which was
constantly rising over the past 20 years. These trends are
confirmed by the results shown in this article for China, the E.U.,
and the U.S.A. (see Figure 2). We find that crop-based nonfood
products are the only product category consistently showing
increases throughout the three regions. This emphasizes the
relevance and importance of correctly accounting for trade and
consumption of nonfood products such as biofuels, cosmetics,
textiles, and leather products. The truncation of nonfood supply
chains could be avoided by integrating FABIO with a monetary
MRIO into a hybrid IO system to track flows of nonfood
products along monetary supply chains.20,24 Currently FABIO,
as well as other biophysical accounting approaches,56 considers
other uses a final consumption category. Yet, hybridization of
FABIO is an obvious development option.
SEEA Compatibility. In its current version, FABIO is not fully

compliant with the SEEA guidelines for physical flow accounts
for agriculture, forestry, and fisheries.57 First, natural inputs (e.g.,
carbon dioxide, soil minerals, water), technical inputs (e.g.,
fertilizers, fuels, pesticides), and residuals (food waste, oxygen,
water vapor, unused biomass, not incorporated technical inputs)
are not fully captured by the PSUTs. Moreover, the commodity
balances are reported in primary equivalents, aggregating
agricultural and food products. Primary and secondary products
can thus in many cases not be distinguished. This is a substantial
limitation, as it means that FABIO’s classification is not
compatible with that of national accounts, and it is therefore
difficult to connect with economic modeling approaches using a
standard industry classification such as ISIC or NACE. While
production and trade data are available for agricultural and food
products separately, use information is only obtainable in
aggregate form. This could be overcome applying additional
assumptions and some standard estimation procedures for
input−output tables such as RAS or maximum entropy
modeling.58 For the first version of FABIO, we decided to
stick as far as possible to the data as reported by FAOSTAT, thus
not further splitting commodity balances into primary and
secondary products.
Transparency and Flexibility. PSUTs represent a highly

transparent and flexible way of organizing physical flow data
strictly following a mass balancing principle. SUTs were
introduced into economic accounting to give a transparent
framework for reporting economic transactions without the
need for assumptions. They give an integrated framework for
checking the consistency and completeness of data, and report
transactions in natural units (products as inputs and outputs,
industries as activities that transform products). From SUT data,
a variety of assumptions can be made in order to utilize the data
for various analytical purposes.46

Allocation. The critical aspect here for environmental
footprint or life-cycle type approaches is when coproduction
(joint products/byproducts) occurs such that inputs into one
activity are used to produce more than one output. Either

disaggregation of coproduction must occur, or some form of
assumption (based on weight, value, the protein or energy
content, etc.) must be applied to allocate the inputs into the
coproduction process to the respective product outputs.43,59

This is the step that transforms a SUT to an IOT where inputs
are uniquely represented in relation to the production and
further use of products. The current version of the FABIO
database comprises two sets of IO tables based on value and
mass allocation. While value allocation, and the resultant
footprints, pursue an economic logic, when assigning respon-
sibility for inputs to the output product, mass allocation
represents a biophysical logic, splitting inputs based on the
physical outputs independent of their value for the economic
system.
The choice of unit used in the allocation has a large effect on

the results. We compared both physical and economic allocation
for transformation of PSUT to IOT, and found significant
differences for livestock products and “other uses” of crops.
These product groups are based on processes with highly
differing prices of coproducts. The choice of allocation
procedure for these coproducts can thus easily have a large
impact on net-trade results. While we found only minor
differences in net-trade for China, the U.S.A., and the E.U. as
a whole (see Figure 2), calculations for Germany revealed even a
change in the direction of net-trade flows. We found that
Germany was a net-exporter of 0.42 Mha in the year 2013 when
using mass allocation. This result, however, changed to net-
imports of 0.31 Mha when applying value allocation.
It is important to note that the allocation procedure discussed

here solely focuses on the allocation of inputs to coproduced
products (the step to form an IOT). The further allocation
according to subsequent usage of the product (performed
during the Leontief inverse) fully follows a physical logic in our
approach (i.e., the IOT is in physical terms). For example, the
land use impacts of wheat production are allocated to the
subsequent users of wheat based on the kg of wheat used, and
not its dollar value. In contrast, monetary IOTs would allocate
wheat to users according to the users’ payments, irrespective of
actual physical flows.

Drivers. Moreover, in contrast to other biophysical
accounting approaches such as presented by Kastner et al.56

and Tramberend et al.,60 any data analysis methods applicable to
matrix structures can be applied to FABIO. Structural
decomposition analysis, for example, can be used to identify
the drivers of changes in the global agriculture and land use
system.
FABIO exposes the detailed composition and origin of

renewable raw materials and related land embodied in a wide
range of final products. Applying decomposition methods
reveals the main driving factors, such as technology or feed
mix, supply structure or affluence, responsible for changes in
biomass consumption and related supply chains in different
world regions over the past three decades. Such an assessment
will deliver an important empirical basis for identifying potential
future trade-offs arising from the increased competition for
global biomass and for designing actions by business and policy
makers to reduce competing demands.

Economic Modeling. FABIO can be used as a stand-alone
tool to perform footprint and scenario analyses in the tradition
of Leontief-style IO analysis. However, these analyses assume
that physical shares in production inputs are constant, e.g., that
beef producers in one country use a fixed amount of soy cake
from another country per ton of produced beef. Economic
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models, such as CGE and econometric models, can be combined
with FABIO to introduce dynamic changes, such as altered
bilateral trade shares based on relative price changes. At the
same time, FABIO can strengthen existing economic simulation
models by contributing additional product and country detail.
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