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Abstract
Input–output analysis is one of the central methodological pillars of industrial ecology. However,

the literature that discusses different structures of environmental extensions (EEs), that is, the

scopeof physical flowsand their attribution to sectors in themonetary input–output table (MIOT),

remains fragmented. This article investigates the conceptual and empirical implications of apply-

ing two different but frequently used designs of EEs, using the case of energy accounting, where

one represents energy supply while the other energy use in the economy. We derive both exten-

sions from an official energy supply–use dataset and apply them to the same single-region input–

output (SRIO) model of Austria, thereby isolating the effect that stems from the decision for the

extension design. We also crosscheck the SRIO results with energy footprints from the global

multi-regional input–output (GMRIO) dataset EXIOBASE. Our results show that the ranking of

footprints of final demand categories (e.g., household and export) is sensitive to the extension

design and that product-level results can vary by several orders of magnitude. The GMRIO-based

comparison further reveals that for a few countries the supply-extension result can be twice the

size of the use-extension footprint (e.g., Australia and Norway). We propose a graph approach

to provide a generalized framework to disclosing the design of EEs. We discuss the conceptual

differences between the two extension designs by applying analogies to hybrid life-cycle assess-

ment and conclude that our findings are relevant formonitoring of energy efficiency and emission

reduction targets and corporate footprint accounting.
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1 INTRODUCTION

Industrial ecology is the study of the biophysical basis of human societies. Its interest lies in how socioeconomic systems extract, transform, use,

and discard natural resources in order to produce, reproduce, and operate their biophysical structures (Pauliuk &Hertwich, 2015). Understanding

the underlying mechanisms and drivers, for example, the role of household consumption or international trade, is a major concern for industrial

ecologists. Input–output analysis (IOA) has proven to be a suitable framework in this regard (Duchin, 1992; Suh, 2010; Suh & Kagawa, 2006). To

date, environmentally extended monetary IOA (Miller & Blair, 2009) is a common approach for the calculation of various attributional/footprint-

type indicators, such as consumption-based or income-based indicators (Malik, McBain,Wiedmann, Lenzen, &Murray, 2018;Marques, Rodrigues,

Lenzen, & Domingos, 2012;Wiedmann & Lenzen, 2018).
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Input–output (IO) model results can differ for many reasons, often rooted in the specifics of how they are constructed. IO tables can be divided

into three overarching groups: Environmentally extended monetary IO tables (EE-MIOT; Wiedmann & Lenzen, 2018), hybrid IO tables (HIOT) in

mixed monetary and physical units (Merciai & Schmidt, 2018; Nakamura, Nakajima, Kondo, & Nagasaka, 2007), and physical IO tables (Hoekstra

& van den Bergh, 2006; Kovanda, 2018). The different types of tables correspond to different layers of analysis (physical and/or monetary flows)

implying different assumptions on prices and system boundaries (Schaffartzik, Wiedenhofer, & Eisenmenger, 2015; Weisz & Duchin, 2006). They

can further have varying levels of geographical resolution or sector aggregation (Koning et al., 2015; Piñero, Heikkinen, Mäenpää, & Pongrácz,

2015) and, when constructed from supply–use tables (SUTs), use different technology assumptions, that is, constructs (Majeau-Bettez, Wood, &

Strømman, 2014). Through selection of different exogenous drivers, various IOmodels can be constructed from a given IO table, including supply-

driven (Ghosh, 1958;Marques et al., 2012) and demand-driven IOmodels (Leontief, 1970), that treat capital formation either exogenously (Ivanova

et al., 2016) or endogenously (Hertwich & Wood, 2018; Södersten, Wood, & Hertwich, 2018). Comparing results and elaborating the underlying

conceptual differences and communalities therefore constitutes a constant point of discussion in the literature (Dietzenbacher, 2005; Eisenmenger

et al., 2016; Hubacek &Giljum, 2003; Liang,Wang, Zhang, & Yang, 2017; Liang & Zhang, 2013; Suh, 2004).

The presentwork focuses on EE-MIOTs and a rather neglected issue in recent IOmodel comparisons: the design of the environmental extension

(EE) that accompanies theMIOT. An EE-MIOT is an integrated dataset that combines two elements: aMIOT representing monetary inter-industry

flows and final demand, and an extension table in physical units depicting environmental flows that are associated with economic activities (UN,

EU, FAO, OECD, &WB, 2017). Conceptually, extension tables are intended to describe flows required for economic activities that are not directly

captured by theMIOT. The extension depicts flows “that cannot be fulfilled by the technospherewithin a given time period” (Majeau-Bettez,Wood,

Hertwich, & Strømman, 2016, p. 69). This is analogous to factors of production, that is, inputs that are required for production but cannot them-

selves be produced in business establishments (Duchin, 1992). In environmental terms, this corresponds mostly to boundary flows entering (e.g.,

inputs from nature) or leaving (e.g., dilution of pollutants) the economy (UN et al., 2017). While efforts around the System of Environmental-

Economic Accounting (SEEA; UN et al., 2017) strive to provide a framework to consistently integrate environmental and economic information,

in practice such data are usually not clearly matched. This obliges IO practitioners to make assumptions how the physical flows of the EE relate to

the monetary flows of the MIOT (Schaffartzik et al., 2015). As this paper will illustrate for the case of EE-MIOTs, the integration of monetary and

physical accounts is a non-trivial task (Lenzen, 2011) and the rationale behind it can vary significantly.

1.1 Extensions as a key source of variation inmonetary IOmodels

EE-MIOTs are the basis of global multi-regional monetary IO (GMRIO) models, an IOA branch that is concerned with environmental footprints in

general and especially environmental pressures embodied in international trade (Tukker, Giljum, &Wood, 2018;Wiedmann& Lenzen, 2018). Stud-

ies comparing GMRIOs revealed that differences in the EEs are the most important cause for differences in the footprints of nations, for example,

the carbon footprint (Moran&Wood, 2014;Owen, Steen-Olsen, Barrett,Wiedmann, & Lenzen, 2014;Owen,Wood, Barrett, & Evans, 2016; Tukker

et al., 2018).1 Tukker et al. (2018)) traced differences in the extensions back to two key points: different source data and differences in definition

and scope. The former points to the fact that different databases use different source data (e.g., energy or GHG emission statistics). The latter

refers to the situation that extensions may use a different scope for the flows included. Usubiaga and Acosta-Fernandez (2015) have shown that

carbon footprint results can vary significantly when GHG extensions are constructed according to different accounting principles (territory ver-

sus residence), which is mainly due to different allocations of emissions from transport activities (road, water, and air). Furthermore, some studies

neglect bunker fuels, which are used by international shipping and aviation companies, due to difficulties in data handling (Davis & Caldeira, 2010).

But even when bunker fuels are included, the allocation issue is complex, requiring estimation methods, which impede a full understanding of the

allocation to the MIOT (Peters, Davis, & Andrew, 2012). In general, the diversity in scope and definition in the extension design calls for a more

transparent way of communicating which flows are included and how they are allocated to the MIOT, because this affects how results should be

interpreted.

1.2 Different extension designs in energy IOA

The majority of studies that explicitly and empirically compared different extension designs can be found in the field of energy IOA2 (Owen et al.,

2017). Two basic types of energy extensions are under discussion in the literature: an extension representing energy extraction and an extension

representing energy use. The key difference between the two lies in the breakdown of the energy flow at different stages of the energy conversion

1 To the best knowledge of the authors, the only other environmental pressure for which similar comparisons are available is raw material extraction. Eisenmenger et al. (2016)) found that the

differences in the material footprint of Austria, when calculated with various GMRIO models, could be partly explained by the differences in domestic material extraction, that is, the extension

(compare with Tukker et al., 2018).

2 Miller andBlair (2009) present awide array of different environmental IOmodels and thereby various options for integrating environmental datawithmonetary IO tables; for energy in particular

(chapter 9) and environmental IO analysis in general (chapter 10). In chapter 10, the authors differentiate between models based on the generalized IO framework (see the model of the present

study), fully integrated and limited economic-ecologicmodels, and augmented Leontiefmodels. However, for the sake of greater clarity, the authors present the differentmodel types using stylized

and simplified example tables and the comparative analysis of themodel results is not their focus.
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chain and the attribution of flows, including transformation and transportation losses, to industries and/or final demands in theMIOT (Owen et al.,

2017). The two designs thus reflect differentmeasures of the distribution of energy inputs (resp. direct energy flows) to the socioeconomic system.

Costanza and Herendeen (1984) were the first to apply both extension designs in one study, however, the comparison was not the principal

focus of their work. In recent years, both extension designs, energy extraction (Chen &Wu, 2017; Wu & Chen, 2017; Zhang, Qiao, Chen, & Chen,

2016) as well as energy use (Akizu-Gardoki et al., 2018; Lenzen, 1998; Wachsmann, Wood, Lenzen, & Schaeffer, 2009; Zhang et al., 2015; Zhang,

Zheng, & Fath, 2014), have been frequently applied. Motivated by renewed interest in consumption-based energy accounting, Owen et al. (2017))

used a GMRIO model to undertake the first comparative analysis of energy footprints based on two different energy extensions. They find both

designs useful and emphasize that they should be applied to different research questions.

1.3 Research gap, goal, and scope of the paper

Against this background, the aim of the present study is twofold: First, to reassess energy footprints resulting from two different EEs, an extension

representing the energy supply to and another the energy use of the economy, in a single-region IO (SRIO) framework. The present study therefore

is a national counterpart to the GMRIO assessment conducted by Owen et al. (2017). We also take the assessment of Owen et al. (2017)) one

step further by providing a detailed investigation of the implications for product-level energy footprints. Themain advantage of SRIO over GMRIO

models is that they can be constructed from official statistics and are therefore fully compatible with the national accounts provided by national

statistical authorities. Most GMRIO databases also use official national accounts as a starting point for further disaggregation and integration.

However, national accounts are sometimes significantly modified in the course of the GMRIO compilation through balancing algorithms that are

required to reconcile conflicting data (Edens et al., 2015; Hambÿe, Hertveldt, & Michel, 2018; Wilting, 2012).3 To focus our empirical analysis on

the effects that stem from the decision for the extension design and to minimize the uncertainties involved, we derived both extensions from an

official national energy supply–use account. Both extensions are then applied to the same SRIOmodel for one example country and different years

(1999, 2007, and 2014). Austria was chosen as a case study because the authors are very familiar with the country and have a national IO model

and detailed energy data at hand. Nevertheless, we crosschecked the SRIO findings with a GMRIOmodel and discuss energy footprints of regions

calculated with EXIOBASE as well.

The second aim is to provide further clarifications of the empirical results by interpreting the outcomes of our comparison in light of the con-

ceptual differences between the two extension designs. We apply analogies to hybrid life-cycle assessments (LCAs) to discuss these conceptual

implications. Inspired by thework of Pauliuk,Majeau-Bettez, andMüller (2015), we use a graph approach to transparently describe different struc-

tures of extensions, that is, the scope of the physical flows and the attribution of these flows to industries and final consumers in theMIOT.

2 DIFFERENT EXTENSION DESIGNS FROM THE PERSPECTIVE OF ENERGY ACCOUNTING

2.1 Terminology and differences when using an SRIO versus a GMRIO framework

Below, we describe and visualize the two extension designs as they apply in an SRIO framework, as this is the primary basis of the empirical com-

parison in the present study. Themain difference in the extension design of an SRIO and aGMRIOmodel lies in the presence of physical import and

export flows of energy products, which are not explicit in the extension of a GMRIO, but need to be allocated in the EE of an SRIOmodel (compare

withOwen et al., 2017 and see Figure 1). A supply-extension for aGMRIOmodel thus only allocates energy extractionwhereas an SRIOmodel also

includes the allocation of physical trade flows. This is why we apply a slightly different andmore generalized terminology than what has been used

so far.What Owen et al. call the “energy-extracted vector” is hereafter termed “supply-extension.” As the present paper aims to use the nomencla-

ture as set forth in the SEEA-Energy framework, “extraction, which is used in material and energy flow accounting (Fischer-Kowalski et al., 2011),

is termed hereafter “natural inputs.”

2.2 The energy conversion chain

The key difference between the two EEs lies in the breakdown of the energy flow at different stages of the energy conversion chain and the attri-

bution of flow industries and/or final demands in the MIOT (Owen et al., 2017). SEEA organizes physical flows in a series of tables and accounts,

where physical SUTs play a key role. SUTs are balanced accounts of the total in- and outflows of industries andmarkets. Picturing the energy flows

in an energy supply–use table (ESUT) enables a comprehensive description of the entire energy conversion chain, and hence all energy flows that

are included in the two extensions (Heun, Owen, & Brockway, 2018). Further details regarding definitions and system boundaries in SEEA-Energy

3 Noteworthy in this regard is the single-country national accounts consistent (SNAC) footprint approach where an SRIO table is combined with a GMRIO table to ensure that the footprints are

derived from a dataset that is consistent with the official national accounts of a specific country (Edens et al., 2015).
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(a)

(b)

F IGURE 1 (a) Simplified visualization of the energy conversion chain where energy flows between industries andmarkets are depicted as a
black box and only boundary flows that enter and leave the system are shown. (b) The energy conversion chain using a graph visualization of an
ESUT. To facilitate a better overview, primary and secondary energy production processes are aggregated into one box. Adapted from Pauliuk,
Majeau-Bettez, andMüller (2015)

and a detailed description of all energy flows depicted in Figure 1 are included in Supporting Information S2. Additional information on the graph

approach and an extended visualization of the two designs is included in Supporting Information S2.

2.3 The two extension designs

A supply-type extension allocates all energy flows that enter the ESUT (left side of Figure 1a), whereas the use-type allocates all energy flows that

leave the ESUT (right side of Figure 1a).When stock changes (ΔS = Sadd − Swith) are taken into account, the supply-extension (R +W + IM + Swith)

and the use-extension (uin + yh + Sadd + EX + L + O) add up to the same totals.

A supply-extension records energy flows at the entry point into the economy, representing the initial stage of the economy-wide energy conver-

sion chain. For example, natural inputs (R in Figure 1) such as crude oil, natural gas, and coal are allocated tomining industries, fuelwood to forestry,

andhydropower to electricity. Energy fromwastes (W) is allocated to thewaste collection and treatment industries. The subsequent transformation

and distribution steps, that is, the processing of primary into secondary energy products and the delivery of energy to final consumers (e.g., house-

holds), are fully incorporated/endogenized in theMIOT and thus followmonetary transactions. In contrast, a use-extension represents flows at the

final stage of the energy conversion chain. Primary and secondary energy products are allocated to the corresponding production (industries) and

consumption entities (households) that consume energy. In Figure 1, this corresponds to energy industries’ own consumption (O = Ue ), industries

final energy use and non-energy use (uin), transformation and transportation losses (L) as well as direct household consumption (yh). For example,

bunker fuels are allocated to water transport and air transport, respectively; gasoline for private transportation to households, feedstocks; and

process energy to the respective manufacturing industries. After this stage, energy is either released back to the environment when consumed

(as losses of residual heat) or transformed into non-energy products when used as a feedstock. The physical dimension of all transformation and

distribution processes preceding the use-phase is implicitly respected by the design of the use-extension.

In the SRIO model of the present study, monetary transactions of imports are endogenized in the MIOT (see Section 3). This means they are

treated as if theywere producedwithin the (domestic) economy (see Section 3 and Section S3 in Supporting Information S2 formore details); hence

they are included in the gross production vector of the monetary IO table. Consequently, imports (IM) of primary and secondary energy products are

allocated to the respective production industries of theMIOT. For example, import of coal is allocated tomining andmotor fuels tomanufacturing of

petroleumproducts. In the SRIOmodel of the present study, export flows of energy products (EX) are allocated directly to the final demand category

of exports.
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F IGURE 2 (a) Energy supply and use of Austria for 1999, 2007, and 2014. (b)Mapping the 2014 Energy Accounts according to the ESUT
structure using Sankey flows. Underlying data can be found in Supporting Information S1. Unit: peta joule

3 MATERIALS AND METHODS

3.1 The Energy Accounts

The Energy Accounts (EAs) of Austria that underlie our empirical calculations report the energy supply disaggregated by domestic and foreign

origin and the energy use of 88 industries and households in a time series from 1999 to 2016 for 39 energy products (Statistics Austria, 2017).

The use table shows the energy and non-energy use of industries, losses, stock changes, exports, and the consumption of households. EAs are

constructed according to the NACE 2008 industry classification, thus serving as a link between the System of National Accounts (EC, IMF, OECD,

UN, &WB, 2009) and the Energy Balances of the International Energy Agency (IEA, OECD, & Eurostat, 2014).

To avoid double counting and to streamline the dataset with the classification of the SEEA-Energy framework, industries’ intermediate energy

usewas disaggregated into non-energy industries’ final energy consumption, energy industries’ own-use (O), transformation output (VS), and trans-

formation losses (L). A raw dataset that distinguishes these energy flows was provided by Statistics Austria and used for this purpose (Statistics

Austria, 2018). Because official Energy Accounts do not provide an allocation of energy supply, energy loss, and non-energy use to IO industries,

adjustments weremade, which are described in Section S6 in Supporting Information S2. Figures 2 and 3 provide an overview of the energy supply

and use of Austria for the years 1999, 2007, and 2014.

3.2 The single-region IOmodel

Monetary supply–use tables (MSUTs), which differentiate between 65 industries and 65 products, formed the basis of the SRIO model of Aus-

tria (Statistics Austria, 2014). Before constructing the IO model, the following two aggregation steps were required to match the MSUT and

EA industry classifications. First, as EAs report real estate activities (code 68.A) and imputed rents (68.B) under one item, we aggregated the

respective industries and products in the MSUTs. Second, we performed 15 many-to-one aggregations in order to align the more detailed EA
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F IGURE 3 The two energy extensions for the year 2014 disaggregated by energy source and energy uses (including losses). Underlying data
can be found in Supporting Information S1

classification (88 industries), with the MSUT classification (now 64 industries). The concordance table used for this purpose is included in Sup-

porting Information S1.

Henceforth, capital and roman minor letters, respectively, denote matrices and vectors, while italic minor letters stand for scalars (single ele-

ments or running indices). The IO model construction followed the general description of the commodity-by-industry approach (Miller & Blair,

2009). An industry-by-commodity total requirementmatrix was used:

L = D(I − BD)−1,

where D, the matrix of commodity output proportions, and B, the commodity-by-industry coefficient matrix, are derived from the basic MSUTs. A

detailed description is included in Section S3 in Supporting Information S2. An element of matrix L, that is, lij shows the value of output from
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industry i that is directly and indirectly required to produce one unit of commodity j for final demand. The IO model is then extended with direct

energy coefficients

qk = ek x̂−1 ,

representing energy flow k per unit of total industry production (x). The general format of the supply-extendedmodel therefore is:

Fkm = ̂qk L ̂ym.

An element of matrix Fkm, that is, fkm
ij

gives the amount of energy flow k that is embodied in intermediate input i of final product j purchased by

final demand category m. For the implementation of the use design, the IO model needs to account for the energy used directly by final demand

(households, exports, and stocks). This is achieved by adding an appropriate vector of direct energy flows (c) to the equation. The general format of

the use-extendedmodel therefore is:

Fkm = ̂qk L ̂ym + c.

Vector c follows the commodity classification of the IOmodel and its entries are non-zero only for IO commodities representing energy products

(Cruz, 2002).4

IOA relies on the assumption of homogeneous prices, where products have the same price whether sold to industries, households, or to the

export market. In fact, energy is not sold at the same price to all users, an issue that was already noted in early energy IO analysis (Bullard &

Herendeen, 1975). Moreover, IOA assumes that products are homogeneous. In the case of the present SRIO model, this means that imported

and domestically produced electricity are allocated along the same supply chains and there is no structural difference between supply chains that

deliver household demand and export markets.

3.3 The global multi-regional IOmodel EXIOBASE

In order to crosscheck the results from the SRIOmodel calculationwith those generated by a GMRIO database, we apply EXIOBASE.5 National IO

tables serve as the basic data source and starting point for further disaggregation, to represent and differentiate crucial sectors with environmen-

tally sensitive activities (Wood et al., 2015). An industry–technology assumption is applied to transform the SUTs into symmetric input–output

tables (Stadler et al., 2018). EXIOBASE version 3 distinguishes 200 products and 163 industries. In terms of regional detail, it has a clear focus on

the EU. The EU-28 and their 16 most important trading partners are explicitly modeled in EXIOBASE 3, representing about 95% of global GDP

(Wood et al., 2015). The rest of the world (RoW) is aggregated into five separate “Rest of” regions. Overall, version 3 comprises 49 regions and

countries. For the present study, the 2014 industry-by-industry IOT has been used. The EXIOBASE energy accounts are described in detail in

supporting information 2 of Stadler et al. (2018).

4 RESULTS

This sectionpresents andcomparesenergy footprintswhencalculatedwith the supply-extendedand theuse-extendedmodel.Westartwith results

from the SRIO model of Austria and a description of the energy footprints of final products, followed by a comparison of the energy footprints

of final demand categories. After that, we compare the energy footprint of regions when calculated with a supply-extended and a use-extended

GMRIO model. In addition to Austria, here we also add 43 other countries and 5 “rest of the world” regions to the analysis. All results presented

here only show energy footprints of 2014, themost recent year for which all data were available.

4.1 Energy footprints of final products

In Figure 4, we show the energy footprints of the 64 SRIO final products thatwe aggregated across all categories of final demand (households, non-

profit organizations, government, capital formation, and addition to stocks). Figure 4 shows that the supply-extended and use-extended model

distributes energy to final products according to a similar pattern. Both models allocate most of the energy to refined petroleum products (CPA

4 This approach is discussed in detail in chapter 9 inMiller and Blair (2009).

5 It should be borne inmind that differences between SRIOandGMRIOenergy footprints for Austria (seeResults section) can be explained partly by the different scope of the energy flows that are

included. The SRIO footprints shown hereafter allocate only these energy flows to final demand that physically enter the domestic economy of Austria, whereas the GMRIO footprints also include

energy that is used or consumed abroad, for example, the transformation losses embodied in the directly/physically imported energy commodity. Consequently, one can expect the household

energy footprints to be larger when using a GMRIO database.
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F IGURE 4 SRIO-based energy footprints of 64 final products calculated using the supply-extended (left) and the use-extendedmodel (right)
for Austria 2014, broken down by the energy flows included in the respective extension. The footprints are aggregated across final demand
categories. Underlying data can be found in Supporting Information S1

code 19), 307 PJ when using a supply-extension and 466 PJ when applying a use-extension, followed by electricity (code 35) with 208 and 373

PJ, respectively. These two final products thus have by far the largest energy footprint. The third largest product footprint in the supply-extended

model is construction (38) with 93 PJ and in the use-extended model forestry (2) with 80 PJ. In general, we find that both IO models distribute

energy in a comparable manner thus pointing toward the same final products, although with varying magnitudes. The product that deviates most

strongly from this pattern ismining (code4).Here, theuse-extendedmodel allocates only 5PJ (product ranknumber35),while the supply-extended

model allocates 85 PJ (rank number 4).

Of the 64 product footprints, 44 are larger when using a supply-extension, 17 when applying a use-extension, and 3 footprints are identical

because they are zero in bothmodels (codes 47, 97, 98). Out of the 44 product footprints that are largerwhen using a supply-extension, 30 refer to

services, mainly shown in the lower part of Figure 4 (CPA codes 45 and higher).

The next figure illustrates the relative differences between product footprints. Figure 5 plots the energy footprints of the supply-extension on

the x-axis and the footprints of the use-extension on the y-axis. A list assigning products to product groups is included in Supporting Information

S1. Of the 64 product footprints, 15 are within the indicative 15% range of deviations (not counting the three product footprints that are zero), of

which 10 belong to manufacturing (secondary products), 4 to services, and 1 to the primary sector (products of agriculture). The figure shows that

energy footprints of services have the tendency to be larger when applying a supply-extension (32 are larger when using a supply-extension and

7 are smaller). The footprints with the largest relative deviation are mining and quarrying (code 4), where the supply-extension footprint (87 PJ)

exceeds the use-extension footprint (5 PJ) by a factor of 16.7; waste treatment (37) with a factor of 5.7 (9 PJ and 2 PJ); warehousing services (52)

with a factor of 3.2 (18 and 5PJ); and products ofwood (16)with a factor of 3.1. The large absolute deviations in the footprints of refined petroleum
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F IGURE 5 SRIO-based energy footprints of final products from the supply-extendedmodel (x-axis) and the use-extendedmodel (y-axis),
logarithmic scales, Austria 2014. The two dashed lines surrounding the equality line depict an indicative+/−15% deviation range. Product
footprints that fall between these lines differ by not more than 15%. Labels showCPA codes. Unit: peta joule. Underlying data can be found in
Supporting Information S1

products (19) and electricity (35) become smaller when viewed in relative terms; the use-extension exceeds the supply-extension footprint by a

factor of 1.5 and 1.8, respectively, for these products. Figure 5 indicates that, when applying a use-extension, the larger amount of energy allocated

to refined petroleum and electricity has its counterpart in the relatively smaller amount allocated to services, manufacturing, and other products.

4.2 Energy footprints by final demand categories

We now investigate the energy footprints disaggregated by the different categories of final demand. The strongest convergence between supply-

extended and use-extendedmodel results, viewed in both relative and absolute terms, is found for the energy footprints of households. The supply-

extended model allocates 735.4 PJ to the final demand of households and the use-extended IOmodel 669.1 PJ, resulting in a difference of 66.2 PJ.

Taking a hypothetical mean of the twomodel results as a benchmark ( x̄ = (735.4 + 669.1)∕2 = 702.3), then household footprints differ by around
9.4%of thatmean (see Figure 6). In comparisonwith the absolute and relative differences of exports (161.8 PJ or 22.7%) and the other final demand

categories (98 PJ or 34%), this is the smallest value. The variation in the energy footprint of other final demand can be attributed foremost to dif-

ferences in the footprint of gross fixed capital formation, with 190.1 PJ when using the supply-design and 110.3 PJ when applying a use design,

and government consumption, with 121.3 and 74.7 PJ, respectively. The strongest divergence in absolute terms is found for the energy footprint

of exports; here the supply-extended model allocates 631.1 PJ and the use-extended model 792.9 PJ. The large absolute variation in export foot-

prints, as can be seen in Figure 5, is to the largest part driven by the variations in the final product footprints of petroleum products and elec-

tricity. Section S5 in Supporting Information S2 provides a more detailed analysis of the energy footprints of final demand broken down by final

products.
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F IGURE 6 SRIO-based energy footprints by final demand categories and by energy flows, 2014; supply-extendedmodel (left) and
use-extendedmodel (right). Underlying data can be found in Supporting Information S1

The relatively strong divergence in the export footprints leads to different rankings of the footprints of the final demand categories.

When applying a supply-extensions, most energy is allocated to households (735.4 PJ; 43.1% of energy supply), followed by exports (630 PJ;

37%) and other final demand (340.5 PJ; 19.9%). When applying a use-extension this changes and most energy is allocated to exports (792.9

PJ; 46.5%), followed by households (669.1 PJ; 39.2%) and other final demand (244.8 PJ; 14.3%). The ranking of the footprints of the final

demand components is thus sensitive to the extension design. Section S4 in Supporting Information S2 includes a comparison of the final

demand footprints and the associated variations for the years 1999, 2007, and 2014, revealing a relatively stable pattern, that is, ranking over

time.

4.3 Energy footprint of regions

In order to validate the SRIO results against those generated with a GMRIOmodel, we calculated regional energy footprints with EXIOBASE. The

aggregated energy footprint on the regional level shows direct and indirect energy use of the countries’ total final demand. Besides households,

this also includes capital formation, government consumption, and other final demand categories, but excludes demand for exports. Summation of

all supply-extended and all use-extended regional energy footprints must add up to the same total, that is, global inputs from nature (573,509 PJ in

2014). For total final demand of Austria, the supply-extended footprint is approx. 1,339 PJ and the use-extended footprint is 1,722 PJ. Taking the

hypothetical mean of the two results, then the two energy footprints differ by approx. 25%. As can be seen in Figure 7, our analysis revealed that

24 of the 49 region footprints are outside the 15% threshold.

The largest absolute variations between supply-extended and use-extended energy footprints are observed for the United States (approx.

11,486 PJ), RoW Asia and Pacific (9,880 PJ) and China (approx. 9,028 EJ). The two largest relative variations are found for Australia, where the

supply-extended footprint (11,981 PJ) ismore than twice (factor 1.25, i.e., approx. 125% larger) the use-extended footprint (5,319 PJ), andNorway,

where the supply-extended footprint amounts to 2,888PJ and theuse-extended footprint to 1,478PJhence the supply-extended footprint exceeds

its counterpart by a factor of 0.95. All EXIOBASE results are included in Supporting Information S1.
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F IGURE 7 Supply-extended and use-extended energy footprints of nations, 2014, EXIOBASE. The two dashed lines surrounding the equality
line depict the+/−15% range of deviations between the two designs of extensions. Underlying data can be found in Supporting Information S1

5 DISCUSSION

5.1 Empirical implications

Our empirical comparison revealed that SRIO-based energy footprints are sensitive to the extension design, leading to different rankings of the

footprints of the final demand categories. Questions may arise whether the supply-extension and use-extension footprints would converge more

strongly when compared in a GMRIO framework. We therefore crosschecked our observations with energy footprints of regions calculated with

EXIOBASE, with the results confirming the insights from the SRIOmodel comparison. We therefore conclude that energy footprints are sensitive

to the extension design, not just in an SRIO but also in a GMRIO framework.

The comparison of SRIO results at the product level has shown, even more pronounced, that footprints can vary by several orders of magni-

tude. Only 15 of the 64 product footprints show deviations of less than 15%, which concerns particularly manufactured products (Figure 5). Much

greater percentage deviations appear for a few key products (e.g., electricity, refined petroleum, and mining) that have pivotal importance for the

energy supply and use of the economy. As IO-based analysis are increasingly used to inform policy and demand-side approaches to climate change

mitigation, these differences are highly relevant in terms of prioritization. These variations are relevant especially for hot-spot analyses in the con-

text of corporate responsibility efforts (Kjaer, Høst-Madsen, Schmidt, & McAloone, 2015; Martinez, Delgado, Martinez Marin, & Alvarez, 2018a,

2018b; Martinez, Marchamalo, & Alvarez, 2018), where EE-MIOTs, also in hybrid LCA-IOA frameworks (Suh et al., 2004; Yu &Wiedmann, 2018),

are increasingly applied for calculating footprint accounts of organizations, companies, and products.

Moreover, our comparison showed that energy footprints of service sectors tend to be larger when applying a supply-extension (Figure 5). We

found that 32 services are larger when using a supply-extension and 7 are smaller.We therefore conclude that energy footprints of services, when

calculated with EE-MIOTs, are structurally biased by the selection of the extension design. This finding gains in importance as service sectors are

repeatedly discussed as a vehicle for green growth, the sharing economy, and recently for a circular low-carbon economy (Kjaer, Pigosso, Niero,



12 WIELAND ET AL.

Bech, & McAloone, 2018; Lifset, 2000). This highlights that the analysis of the environmental implications of services should take special care to

critically reflect on the respective extensions design used.

5.2 Conceptual implications

The system boundary of supply-extended and use-extended EE-MIOTs are in principle the same, following standards in the system of national

accounts.While theMIOT represents all flowsof goods and services that have aneconomic, that is,market value, both energy extensions record the

same energy flow through the system. However, depending on one’s perspective, monetary supply chains and energy conversion chains intersect

at different points, making an explicit assumption on allocation necessary.

The supply-extendedmodel implies a logic that is conceptuallymost strongly related to the partition allocation of environmental burden by eco-

nomic value in traditional LCA (Reap, Roman,Duncan,&Bras, 2008; Schaffartzik et al., 2015). The energy supply assigned to the energy industries is

distributed to downstream industries according to their monetary payments, given IOAs homogeneity assumptions on products and prices (recall

the IOmodel description in chapter 3).

The use-extendedmodel resembles amodel structure that is similar to tiered hybrid techniques in LCA-IOA. In a tiered hybridmodel, the system

under study is partitioned into supplementary modules. The direct and some important lower-order upstream energy requirements are examined

in a separated (process analysis)modulewhile remaining higher-order requirements, for example, energy used in the extraction and processing, are

covered by an input–output table (Suh et al., 2004). The use design facilitates a similar conceptual division. The first-order energy use is captured

by allocating direct energy use, for example, of fuels, to final consumption of households, exports, government, and investment already in the EE

independently frommonetary transactions or any assumptions on prices, using energy statistics.6 TheMIOT is then used to estimate and allocate

the remaining higher-order energy requirements, where in the environmental extension all the second-order energy use is allocated to the respec-

tive energy-using industries. Transformation losses7 from producing energy commodities and energy industries’ own consumption then represent

a third-order energy use and are allocated through the MIOT along the respective supply chains to final demand. The use-extended model setup

therefore utilizes an environmental extension with two supplementary modules, where direct energy use of final demand is allocated through a

data-driven, often physical module from energy statistics, while the monetary (IO) module is used to account for all higher order, that is, indirect,

energy requirements, by that means expanding the system boundary of the physical module.

5.3 Interpreting disagreement from a conceptual point of view

Following our conceptual considerations, we suggest to conceive energy footprintswhen calculatedwith a supply-extension and a use-extension as

two different indicators. The observed divergences should not be solely interpreted as “errors” that are grounded in the homogeneity assumptions

of IOA. Instead, the two indicators are derived from EE-MIOTs with different system structures and hence are correct in their own regard. The

supply-extended footprint gives more weight to the monetary dimension and thus strongly reflects the economic drivers that push energy supply.

Energy industries generate revenues by producing and selling energy. In this regard, the monetary expenditures of final consumers are viewed as

an incentive for supplying energy. The use design puts more weight to the physical dimension of production and consumption, by partitioning the

energy supply into its different economic uses and sectoral production “recipes,” making sector-level technology mixes visible and clarifying the

direct energy intensity of each sector and activity. Although the result of both EE-MIOTs are described using the same terminology, they must be

interpreted as providing different types of information.

5.4 Interpreting disagreement with regard to homogeneity assumptions

The SRIO model of Austria differentiates between 64 industries and products, where all monetary flows related to extraction of energy and non-

energy products, that is, metallic and non-metallic minerals are aggregated into a single sector “mining and quarrying.” Because IO modeling

requires assuming a homogeneous product group, energy flows that are allocated to “mining and quarrying” are distributed to non-energy sup-

ply chains as well. Austria extracts relatively small quantities of natural gas and oil (86 PJ, i.e., 1.8 million metric tons) next to large amounts of

non-metallic (65.5 million metric tons) and to a smaller extent metallic minerals (2.6 million metric tons, the majority of which are iron ores) (UN

6 In general, the IEA collects data for the energy balances based on standardized questionnaires (IEA, 2019a) that are submitted by national statistical institutions (NSI). The surveys include

guidance on how the NSIs can or should collect the data just for a few important processes, for example, for combined heat and power plants (CHP). The methods for the data collection can

therefore differ between countries. Data onmonetary transactions are not a requirement for the compilation of energy consumption but could be usedwhen only partial information is available. In

the case of Austria, for example (Statistics Austria, 2016), an important data source for estimating the energy consumption of industries and households is sample surveys that are conducted every

2 years that are then combinedwith reports frommarket regulators such as “E-Control” and other data sources. To the best knowledge of the authors, the claim that energy statistics are compiled

independently frommonetary transactions is true for the case of Austria but would need to be checked for other countries.

7 Note that though the present use-extended IOmodel allocates transformation losses to the IO industries producing the energy. It is equally feasible to allocate the transformation losses directly

to the energy users (households, exports, non-energy industries), for example, assuming a constant ratio between final energy consumption and associated losses across users. This would result in

removing the second-order energy requirements (energy for processing) from theMIOT. This approach has been adopted byOwen et al. (2017).
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IRP, 2017). We presume that the monetary flows of “mining and quarrying” products in the official MSUT/MIOT therefore predominantly mirror

the flow of non-energy products. Using energy and non-energy supply chains alike to allocate energy flows to final demand is a probable cause for

disagreements between supply-extended and use-extended energy footprints. Relaxing the assumption of homogeneous product groups through

further disaggregation of the SRIOmodel, that is, the underlyingMSUT could result in a higher convergence of supply-extension and use-extension

energy footprints.

Even though MSUT andMIOT are more disaggregated and hence separate monetary flows of energy from non-energy mining products, like in

ourGMRIOexample EXIOBASE, supply-extended and use-extended energy footprints still deviate considerably. This can be interpreted, at least to

a certain extent, as an effect of assuming homogeneous energy prices.8 In contrast to the supply-extended IOmodel, the use-extendedmodel does

not imply any energy price assumptions to allocate energy flows to industries or final consumers that use the energy because all transformations,

losses, and distribution processes preceding the use-phase are implicitly included by design of the use-extension. It is therefore reasonable to

assume that a supply-extended hybrid IOmodel where flows of energy products are represented in energy units, meaning no homogeneous prices

are assumed for the energy products, could convergemore strongly with the results of the use-extended IOmodel.Whether supply-extended and

use-extended energy footprints convergemore strongly when using amore disaggregatedMIOT or even amixed-unit HIOT is beyond the scope of

the present paper and should therefore be subject of further empirical investigations.

5.5 Two different pre-analytic perspectives

We agree with Owen et al. (2017) that both extensions are useful and the choice depends on the perspective, (often-implicit) principles of respon-

sibility and the research question, either focusing on the upstream part (origin/source) or the downstream part (actual energy use of industries) of

the energy conversion chain. The observed variations are considerable and emphasize the importance of the extension design when EE-MIOTs are

used for monitoring energy efficiency and short- or medium-term emission reduction targets (Barrett et al., 2013; Barrett, Cooper, Hammond, &

Pidgeon, 2018; Scott &Barrett, 2015; Steininger et al., 2014), which usually aim at the same percentage range as the divergences.Which extension

is used also reflects an assumption of responsibility in the energy conversion chain and where a demand-side measure is supposed to intervene

in order to curb current unsustainably high levels of energy consumption (Creutzig et al., 2018). If we are concerned with extraction and primary

energy supply as prerequisites to any form of energy use and we assume that the extractive sectors are “more responsible,” then we must turn to

patterns of energy supply. If, however, we see industrial energy use across sectors as primarily responsible for its own energy use (and emissions),

andwe view final demand for products as driving energy use of industries, thenwemaybe better advised to consider the distribution of energy use.

Accordingly, wewould also use different extensions tomodel the expected impact of measures targeting different stages of the energy conversion

chain. Similar discussion can be found in the literature on carbon accounting and (shared) responsibility9 (Csutora &Vetőnémózner, 2014; Lenzen,

Murray, Sack, &Wiedmann, 2007; Steininger, Lininger, Meyer, Muñoz, & Schinko, 2016).

6 CONCLUSION

The present study investigated the conceptual and empirical implications of applying two different but frequently used designs of energy exten-

sions. Our empirical comparison of supply-extended and use-extended SRIO and GMRIO model results revealed considerable divergences in

energy footprints. Analogies can be drawn from lively debates in LCA, which reveal the conceptual differences between the two extension designs

and show that although the result of both EE-MIOTs are usually described using the same terminology, they must be interpreted as providing dif-

ferent types of information. The present work therefore calls for more rigor in communicating and disclosing the design of extensions to allow for

more meaningful interpretations of results, greater transparency and better reproducibility of modeling results. Finally, we urge industrial ecolo-

gists to critically and transparently reflect on their pre-analytic view taken on howwe (often implicitly) attribute responsibility to derive potentially

meaningful interventions into the socio-economic system. In the end, this also requires us to think about actors, their relations to one another, and

their decision-making power, a crucial aspect for sociometabolic research.
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Csutora, M., & Vetőné mózner, Z. (2014). Proposing a beneficiary-based shared responsibility approach for calculating national carbon accounts during the

post-Kyoto era. Climate Policy, 14(5), 599–616. https://doi.org/10.1080/14693062.2014.905442
Davis, S. J., & Caldeira, K. (2010). Consumption-based accounting of CO2 emissions. Proceedings of the National Academy of Sciences of the United States of

America, 107(12), 5687–5692. https://doi.org/10.1073/pnas.0906974107
Dietzenbacher, E. (2005). Waste treatment in physical input–output analysis. Ecological Economics, 55(1), 11–23. https://doi.org/10.1016/

j.ecolecon.2005.04.009

Duchin, F. (1992). Industrial input-output analysis: Implications for industrial ecology. Proceedings of the National Academy of Sciences, 89(3), 851–855.
https://doi.org/10.1073/pnas.89.3.851

EC, IMF,OECD,UN,&WB. (2009). SystemofNational Accounts. NewYork. Retrieved fromEuropeanCommission; InternationalMonetary Fund;Organisation

for Economic Co-operation andDevelopment; United Nations;World Bankwebsite: https://unstats.un.org/unsd/nationalaccount/docs/sna2008.pdf

Edens, B., Hoekstra, R., Zult, D., Lemmers, O., Wilting, H., &Wu, R. (2015). A method to create carbon footprint estimates consistent with national accounts.

Economic Systems Research, 27(4), 440–457. https://doi.org/10.1080/09535314.2015.1048428
Eisenmenger, N., Wiedenhofer, D., Schaffartzik, A., Giljum, S., Bruckner, M., Schandl, H., … Koning, A. (2016). Consumption-based material flow indi-

cators — Comparing six ways of calculating the Austrian raw material consumption providing six results. Ecological Economics, 128, 177–186.
https://doi.org/10.1016/j.ecolecon.2016.03.010

Ewing, B. R., Hawkins, T. R., Wiedmann, T. O., Galli, A., Ertug Ercin, A., Weinzettel, J., & Steen-Olsen, K. (2012). Integrating ecological and water footprint

accounting in amulti-regional input–output framework. Ecological Indicators, 23, 1–8. https://doi.org/10.1016/j.ecolind.2012.02.025
Fischer-Kowalski, M., Krausmann, F., Giljum, S., Lutter, S., Mayer, A., Bringezu, S.,…Weisz, H. (2011). Methodology and indicators of economy-widematerial

flow accounting. Journal of Industrial Ecology, 15(6), 855–876. https://doi.org/10.1111/j.1530-9290.2011.00366.x
Ghosh, A. (1958). Input-output approach in an allocation system. Economica, 25(97), 58. https://doi.org/10.2307/2550694
Hambÿe, C., Hertveldt, B., & Michel, B. (2018). Does consistency with detailed national data matter for calculating carbon footprints with global multi-

regional input–output tables? A comparative analysis for Belgium based on a structural decomposition. Journal of Economic Structures, 7(1), 311.
https://doi.org/10.1186/s40008-018-0110-6

Hertwich, E. G., & Wood, R. (2018). The growing importance of scope 3 greenhouse gas emissions from industry. Environmental Research Letters, 13(10),
104013. https://doi.org/10.1088/1748-9326/aae19a

Heun, M. K., Owen, A., & Brockway, P. E. (2018). A physical supply-use table framework for energy analysis on the energy conversion chain. Applied Energy,
226, 1134–1162. https://doi.org/10.1016/j.apenergy.2018.05.109

Hoekstra, R., & van den Bergh, J. C. J. M. (2006). Constructing physical input–output tables for environmental modeling and accounting: Framework and

illustrations. Ecological Economics, 59(3), 375–393. https://doi.org/10.1016/j.ecolecon.2005.11.005
Hubacek, K., & Giljum, S. (2003). Applying physical input–output analysis to estimate land appropriation (ecological footprints) of international trade activi-

ties. Ecological Economics, 44(1), 137–151. https://doi.org/10.1016/S0921-8009(02)00257-4

https://orcid.org/0000-0001-5944-7155
https://orcid.org/0000-0001-5944-7155
https://doi.org/10.1016/j.jclepro.2018.08.235
https://doi.org/10.1016/j.applthermaleng.2018.03.049
https://doi.org/10.1080/14693062.2013.788858
https://doi.org/10.1016/0301-4215\05075\05190035-X
https://doi.org/10.1016/0301-4215\05075\05190035-X
https://doi.org/10.1016/j.rser.2016.11.151
https://doi.org/10.1038/s41558-018-0121-1
https://doi.org/10.1080/14693062.2014.905442
https://doi.org/10.1073/pnas.0906974107
https://doi.org/10.1016/j.ecolecon.2005.04.009
https://doi.org/10.1016/j.ecolecon.2005.04.009
https://doi.org/10.1073/pnas.89.3.851
https://unstats.un.org/unsd/nationalaccount/docs/sna2008.pdf
https://doi.org/10.1080/09535314.2015.1048428
https://doi.org/10.1016/j.ecolecon.2016.03.010
https://doi.org/10.1016/j.ecolind.2012.02.025
https://doi.org/10.1111/j.1530-9290.2011.00366.x
https://doi.org/10.2307/2550694
https://doi.org/10.1186/s40008-018-0110-6
https://doi.org/10.1088/1748-9326/aae19a
https://doi.org/10.1016/j.apenergy.2018.05.109
https://doi.org/10.1016/j.ecolecon.2005.11.005
https://doi.org/10.1016/S0921-8009\05002\05100257-4


WIELAND ET AL. 15

IEA. (2019a). Statistics Resources: Key resources for energy statisticians and IEA data users. Retrieved from https://www.iea.org/statistics/resources/

questionnaires/
IEA. (2019b).World energy balances (2019 ed.). Paris: Database documentation.
IEA, OECD, & Eurostat. (2014). Energy statistics manual. Paris. Retrieved from https://doi.org/10.1787/9789264033986-en
Ivanova, D., Stadler, K., Steen-Olsen, K.,Wood, R., Vita, G., Tukker, A., &Hertwich, E. G. (2016). Environmental impact assessment of household consumption.

Journal of Industrial Ecology, 20(3), 526–536. https://doi.org/10.1111/jiec.12371
Kjaer, L., Høst-Madsen, N., Schmidt, J., &McAloone, T. (2015). Application of environmental input-output analysis for corporate and product environmental

footprints—Learnings from three cases. Sustainability, 7(9), 11438–11461. https://doi.org/10.3390/su70911438
Kjaer, L. L., Pigosso, D. C. A., Niero, M., Bech, N. M., & McAloone, T. C. (2018). Product/service-systems for a circular economy: The route to decoupling

economic growth from resource consumption? Journal of Industrial Ecology, 58(3), 22–35. https://doi.org/10.1111/jiec.12747
Koning, A. de, Bruckner, M., Lutter, S., Wood, R., Stadler, K., & Tukker, A. (2015). Effect of aggregation and disaggregation on embodied material use of prod-

ucts in input–output analysis. Ecological Economics, 116, 289–299. https://doi.org/10.1016/j.ecolecon.2015.05.008
Kovanda, J. (2018). Use of physical supply and use tables for calculation of economy-wide material flow indicators. Journal of Industrial Ecology, 23(4), 893–

905. https://doi.org/10.1111/jiec.12828
Lenzen,M. (1998). Primary energy and greenhouse gases embodied in Australian final consumption: An input–output analysis. Energy Policy, 26, 495–506.
Lenzen, M. (2011). Aggregation versus disaggregation in input–output analysis of the environment. Economic Systems Research, 23(1), 73–89.

https://doi.org/10.1080/09535314.2010.548793
Lenzen, M., Murray, J., Sack, F., & Wiedmann, T. (2007). Shared producer and consumer responsibility — Theory and practice. Ecological Economics, 61(1),

27–42. https://doi.org/10.1016/j.ecolecon.2006.05.018
Leontief,W. (1970). Environmental repercussions and the economic structure: An input-output approach. The Review of Economics and Statistics, 52(3), 262–

271.
Liang, S., Wang, Y., Zhang, T., & Yang, Z. (2017). Structural analysis of material flows in China based on physical andmonetary input-output models. Journal of

Cleaner Production, 158, 209–217. https://doi.org/10.1016/j.jclepro.2017.04.171
Liang, S., & Zhang, T. (2013). Investigating reasons for differences in the results of environmental, physical, and hybrid input-output models. Journal of Indus-

trial Ecology, 17(3), 432–439. https://doi.org/10.1111/jiec.12010
Lifset, R. (2000). Moving from products to services. Journal of Industrial Ecology, 4(1), 1–2. https://doi.org/10.1162/108819800569195
Majeau-Bettez, G., Wood, R., Hertwich, E. G., & Strømman, A. H. (2016). When do allocations and constructs respect material, energy, financial, and produc-

tion balances in LCA and EEIO? Journal of Industrial Ecology, 20(1), 67–84. https://doi.org/10.1111/jiec.12273
Majeau-Bettez,G.,Wood, R., & Strømman,A.H. (2014). Unified theory of allocations and constructs in life cycle assessment and input-output analysis. Journal

of Industrial Ecology, 18(5), 747–770. https://doi.org/10.1111/jiec.12142
Malik, A.,McBain,D.,Wiedmann, T.O., Lenzen,M., &Murray, J. (2018). Advancements in input-outputmodels and indicators for consumption-based account-

ing. Journal of Industrial Ecology, 23(2), 300–312. https://doi.org/10.1111/jiec.12771
Marques, A., Rodrigues, J., Lenzen, M., & Domingos, T. (2012). Income-based environmental responsibility. Ecological Economics, 84, 57–65.

https://doi.org/10.1016/j.ecolecon.2012.09.010
Martinez, S., Delgado, M. d. M., Martinez, R. M., & Alvarez, S. (2018a). The environmental footprint of the end-of-life phase of a dam through a hybrid-MRIO

analysis. Building and Environment, 146, 143–151. https://doi.org/10.1016/j.buildenv.2018.09.049
Martinez, S., Delgado, M. d. M., Martinez, R. M., & Alvarez, S. (2018b). Organization environmental footprint through input-output analysis: A case study in

the construction sector. Journal of Industrial Ecology, 23(4), 879–892. https://doi.org/10.1111/jiec.12827
Martinez, S., Marchamalo, M., & Alvarez, S. (2018). Organization environmental footprint applying a multi-regional input-output analysis: A case study of a

wood parquet company in Spain. The Science of the Total Environment, 618, 7–14. https://doi.org/10.1016/j.scitotenv.2017.10.306
Merciai, S., & Schmidt, J. (2018). Methodology for the construction of global multi-regional hybrid supply and use tables for the EXIOBASE v3 database.

Journal of Industrial Ecology, 22(3), 516–531. https://doi.org/10.1111/jiec.12713
Miller, R. E., & Blair, P. D. (2009). Input-output analysis: Foundations and extensions (2nd edition). Cambridge: Cambridge University Press.

https://doi.org/10.1017/CBO9780511626982
Moran,D., &Wood, R. (2014). Convergence between the eora,wiod, exiobase, and openeu’s consumption-based carbon accounts. Economic Systems Research,

26(3), 245–261. https://doi.org/10.1080/09535314.2014.935298
Nakamura, S., Nakajima, K., Kondo, Y., & Nagasaka, T. (2007). The waste input-output approach to materials flow analysis. Journal of Industrial Ecology, 11(4),

50–63. https://doi.org/10.1162/jiec.2007.1290
Owen, A., Brockway, P., Brand-Correa, L., Bunse, L., Sakai, M., & Barrett, J. (2017). Energy consumption-based accounts: A comparison of results using differ-

ent energy extension vectors. Applied Energy, 190, 464–473. https://doi.org/10.1016/j.apenergy.2016.12.089
Owen, A., Steen-Olsen, K., Barrett, J., Wiedmann, T., & Lenzen, M. (2014). A structural decomposition approach to comparing MRIO databases. Economic

Systems Research, 26(3), 262–283. https://doi.org/10.1080/09535314.2014.935299
Owen, A., Wood, R., Barrett, J., & Evans, A. (2016). Explaining value chain differences in MRIO databases through structural path decomposition. Economic

Systems Research, 28(2), 243–272. https://doi.org/10.1080/09535314.2015.1135309
Pauliuk, S., & Hertwich, E. G. (2015). Socioeconomicmetabolism as paradigm for studying the biophysical basis of human societies. Ecological Economics, 119,

83–93. https://doi.org/10.1016/j.ecolecon.2015.08.012

Pauliuk, S., Majeau-Bettez, G., &Müller, D. B. (2015). A general system structure and accounting framework for socioeconomic metabolism. Journal of Indus-
trial Ecology, 19(5), 728–741. https://doi.org/10.1111/jiec.12306

Peters, G. P., Davis, S. J., & Andrew, R. (2012). A synthesis of carbon in international trade. Biogeosciences, 9(8), 3247–3276. https://doi.org/
10.5194/bg-9-3247-2012

Piñero, P., Heikkinen,M.,Mäenpää, I., &Pongrácz, E. (2015). Sector aggregationbias in environmentally extended input outputmodeling of rawmaterial flows

in Finland. Ecological Economics, 119, 217–229. https://doi.org/10.1016/j.ecolecon.2015.09.002
Reap, J., Roman, F., Duncan, S., & Bras, B. (2008). A survey of unresolved problems in life cycle assessment. The International Journal of Life Cycle Assessment,

13(5), 374–388. https://doi.org/10.1007/s11367-008-0009-9
Schaffartzik, A., Wiedenhofer, D., & Eisenmenger, N. (2015). Rawmaterial equivalents: The challenges of accounting for sustainability in a globalized world.

Sustainability, 7(5), 5345–5370. https://doi.org/10.3390/su7055345

https://www.iea.org/statistics/resources/questionnaires/
https://www.iea.org/statistics/resources/questionnaires/
https://doi.org/10.1787/9789264033986-en
https://doi.org/10.1111/jiec.12371
https://doi.org/10.3390/su70911438
https://doi.org/10.1111/jiec.12747
https://doi.org/10.1016/j.ecolecon.2015.05.008
https://doi.org/10.1111/jiec.12828
https://doi.org/10.1080/09535314.2010.548793
https://doi.org/10.1016/j.ecolecon.2006.05.018
https://doi.org/10.1016/j.jclepro.2017.04.171
https://doi.org/10.1111/jiec.12010
https://doi.org/10.1162/108819800569195
https://doi.org/10.1111/jiec.12273
https://doi.org/10.1111/jiec.12142
https://doi.org/10.1111/jiec.12771
https://doi.org/10.1016/j.ecolecon.2012.09.010
https://doi.org/10.1016/j.buildenv.2018.09.049
https://doi.org/10.1111/jiec.12827
https://doi.org/10.1016/j.scitotenv.2017.10.306
https://doi.org/10.1111/jiec.12713
https://doi.org/10.1017/CBO9780511626982
https://doi.org/10.1080/09535314.2014.935298
https://doi.org/10.1162/jiec.2007.1290
https://doi.org/10.1016/j.apenergy.2016.12.089
https://doi.org/10.1080/09535314.2014.935299
https://doi.org/10.1080/09535314.2015.1135309
https://doi.org/10.1016/j.ecolecon.2015.08.012
https://doi.org/10.1111/jiec.12306
https://doi.org/10.5194/bg-9-3247-2012
https://doi.org/10.5194/bg-9-3247-2012
https://doi.org/10.1016/j.ecolecon.2015.09.002
https://doi.org/10.1007/s11367-008-0009-9
https://doi.org/10.3390/su7055345


16 WIELAND ET AL.

Scott, K., & Barrett, J. (2015). An integration of net imported emissions into climate change targets. Environmental Science & Policy, 52, 150–157.
https://doi.org/10.1016/j.envsci.2015.05.016

Södersten, C.-J. H., Wood, R., & Hertwich, E. G. (2018). Endogenizing capital in MRIO models: The implications for consumption-based accounting. Environ-
mental Science & Technology, 52(22), 13250–13259. https://doi.org/10.1021/acs.est.8b02791

Stadler, K., Wood, R., Bulavskaya, T., Södersten, C.-J., Simas, M., Schmidt, S.,… Tukker, A. (2018). EXIOBASE 3: Developing a time series of detailed environ-

mentally extendedmulti-regional input-output tables. Journal of Industrial Ecology, 22(3), 502–515. https://doi.org/10.1111/jiec.12715
Statistics Austria (2014). Supply and use tables of Austria. Retrieved from https://www.statistik.at/web_en/statistics/Economy/national_accounts/input_

output_statistics/index.html

Statistics Austria (2016). Energy balances: Standard-Dokumentation Metainformationen. Retrieved from https://www.statistik.at/wcm/idc/idcplg?IdcService=
GET_PDF_FILE&RevisionSelectionMethod=LatestReleased&dDocName=023997

StatisticsAustria (2017). Energy accounts ofAustria: 1999–2016. Retrieved fromhttps://www.statistik.at/web_en/statistics/EnergyEnvironmentInnovation

Mobility/energy_environment/energy/energy_accounts/index.html

Statistics Austria (2018). Supplementary data for the energy accounts of Austria 1999–2016. Vienna, Austria: Statistics Austria.

Steininger, K., Lininger, C., Droege, S., Roser, D., Tomlinson, L., & Meyer, L. (2014). Justice and cost effectiveness of consumption-based versus production-

based approaches in the case of unilateral climate policies.Global Environmental Change, 24, 75–87. https://doi.org/10.1016/j.gloenvcha.2013.10.005
Steininger, K. W., Lininger, C., Meyer, L. H., Muñoz, P., & Schinko, T. (2016). Multiple carbon accounting to support just and effective climate policies. Nature

Climate Change, 6(1), 35–41. https://doi.org/10.1038/nclimate2867

Suh, S. (2004). A note on the calculus for physical input–output analysis and its application to land appropriation of international trade activities. Ecological
Economics, 48(1), 9–17. https://doi.org/10.1016/j.ecolecon.2003.09.003

Suh, S. (Ed.). (2010). Eco-efficiency in industry and science: V. 23. Handbook on input-output economics for industrial ecology. Dordrecht, London: Springer.
https://doi.org/10.1007/978-1-4020-5737-3

Suh, S., & Kagawa, S. (2006). Industrial ecology and input-output economics: An introduction. Economic Systems Research, 17(4), 349–364.

https://doi.org/10.1080/09535310500283476

Suh, S., Lenzen, M., Treloar, G. J., Hondo, H., Horvath, A., Huppes, G., … Norris, G. (2004). System boundary selection in life-cycle inventories using hybrid

approaches. Environmental Science & Technology, 38(3), 657–664. https://doi.org/10.1021/es0263745
Tukker, A., Giljum, S., &Wood, R. (2018). Recent progress in assessment of resource efficiency and environmental impacts embodied in trade: An introduction

to this special issue. Journal of Industrial Ecology, 22(3), 489–501. https://doi.org/10.1111/jiec.12736
Tukker, A., Koning, A. de, Owen, A., Lutter, S., Bruckner, M., Giljum, S.,… Hoekstra, R. (2018). Towards robust, authoritative assessments of environmental

impacts embodied in trade: Current state and recommendations. Journal of Industrial Ecology, 22(3), 585–598. https://doi.org/10.1111/jiec.12716
UN, EU, FAO, OECD, &WB. (2017). System of Environmental-Economic Accounting 2012: Applications and Extensions. New York.

UN IRP. (2017).Global material flows database: Version 2017. Retrieved from http://www.resourcepanel.org/global-material-flows-database

Usubiaga, A., & Acosta-Fernández, J. (2015). Carbon emission accounting in MRIO models: The territory vs. the residence principle. Economic Systems
Research, 27(4), 458–477. https://doi.org/10.1080/09535314.2015.1049126

Wachsmann, U., Wood, R., Lenzen, M., & Schaeffer, R. (2009). Structural decomposition of energy use in Brazil from 1970 to 1996. Applied Energy, 86(4),
578–587. https://doi.org/10.1016/j.apenergy.2008.08.003

Weisz, H., & Duchin, F. (2006). Physical and monetary input–output analysis: What makes the difference? Ecological Economics, 57(3), 534–541.
https://doi.org/10.1016/j.ecolecon.2005.05.011

Wiedmann, T., & Lenzen, M. (2018). Environmental and social footprints of international trade. Nature Geoscience, 11(5), 314–321.

https://doi.org/10.1038/s41561-018-0113-9

Wilting, H. C. (2012). Sensitivity and uncertainty analysis in MRIO modelling; some empirical results with regard to the Dutch carbon footprint. Economic
Systems Research, 24(2), 141–171. https://doi.org/10.1080/09535314.2011.628302

Wood, R., Stadler, K., Bulavskaya, T., Lutter, S., Giljum, S., deKoning, A.,… Tukker, A. (2015). Global sustainability accounting—Developing exiobase formulti-

regional footprint analysis. Sustainability, 7(1), 138–163. https://doi.org/10.3390/su7010138
Wu, X. F., & Chen, G. Q. (2017). Global primary energy use associated with production, consumption and international trade. Energy Policy, 111, 85–94.

https://doi.org/10.1016/j.enpol.2017.09.024

Yu, M., & Wiedmann, T. (2018). Implementing hybrid LCA routines in an input–output virtual laboratory. Journal of Economic Structures, 7(1), 2471.
https://doi.org/10.1186/s40008-018-0131-1

Zhang, B., Qiao, H., Chen, Z. M., & Chen, B. (2016). Growth in embodied energy transfers via China’s domestic trade: Evidence from multi-regional input–

output analysis. Applied Energy, 184, 1093–1105. https://doi.org/10.1016/j.apenergy.2015.09.076
Zhang, Y., Zheng, H., & Fath, B. D. (2014). Analysis of the energy metabolism of urban socioeconomic sectors and the associated carbon footprints: Model

development and a case study for Beijing. Energy Policy, 73, 540–551. https://doi.org/10.1016/j.enpol.2014.04.029
Zhang, Y., Zheng, H., Yang, Z., Su, M., Liu, G., & Li, Y. (2015). Multi-regional input–outputmodel and ecological network analysis for regional embodied energy

accounting in China. Energy Policy, 86, 651–663. https://doi.org/10.1016/j.enpol.2015.08.014

SUPPORTING INFORMATION

Additional supporting informationmay be found online in the Supporting Information section at the end of the article.

How to cite this article: Wieland H, Giljum S, Eisenmenger N, et al. Supply versus use designs of environmental extensions in input–output

analysis: Conceptual and empirical implications for the case of energy. J Ind Ecol. 2019;1–16. https://doi.org/10.1111/jiec.12975

https://doi.org/10.1016/j.envsci.2015.05.016
https://doi.org/10.1021/acs.est.8b02791
https://doi.org/10.1111/jiec.12715
https://www.statistik.at/web_en/statistics/Economy/national_accounts/input_output_statistics/index.html
https://www.statistik.at/web_en/statistics/Economy/national_accounts/input_output_statistics/index.html
https://www.statistik.at/wcm/idc/idcplg?IdcService=GET_PDF_FILE\046RevisionSelectionMethod=LatestReleased\046dDocName=023997
https://www.statistik.at/wcm/idc/idcplg?IdcService=GET_PDF_FILE\046RevisionSelectionMethod=LatestReleased\046dDocName=023997
https://www.statistik.at/web_en/statistics/EnergyEnvironmentInnovationMobility/energy_environment/energy/energy_accounts/index.html
https://www.statistik.at/web_en/statistics/EnergyEnvironmentInnovationMobility/energy_environment/energy/energy_accounts/index.html
https://doi.org/10.1016/j.gloenvcha.2013.10.005
https://doi.org/10.1038/nclimate2867
https://doi.org/10.1016/j.ecolecon.2003.09.003
https://doi.org/10.1007/978-1-4020-5737-3
https://doi.org/10.1080/09535310500283476
https://doi.org/10.1021/es0263745
https://doi.org/10.1111/jiec.12736
https://doi.org/10.1111/jiec.12716
http://www.resourcepanel.org/global-material-flows-database
https://doi.org/10.1080/09535314.2015.1049126
https://doi.org/10.1016/j.apenergy.2008.08.003
https://doi.org/10.1016/j.ecolecon.2005.05.011
https://doi.org/10.1038/s41561-018-0113-9
https://doi.org/10.1080/09535314.2011.628302
https://doi.org/10.3390/su7010138
https://doi.org/10.1016/j.enpol.2017.09.024
https://doi.org/10.1186/s40008-018-0131-1
https://doi.org/10.1016/j.apenergy.2015.09.076
https://doi.org/10.1016/j.enpol.2014.04.029
https://doi.org/10.1016/j.enpol.2015.08.014
https://doi.org/10.1111/jiec.12975

