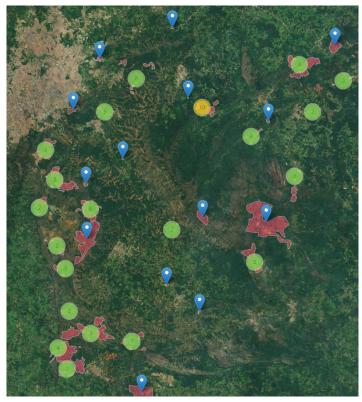


Using geospatial data for assessing metal mining risks and impacts

Sebastian Luckeneder / Institute for Ecological Economics, WU Vienna World Resources Forum, 12-14 October, 2021

Metal mining risks and impacts



Contextual risk

- Potential high-impact areas
- Regional coincidence of mining and protected areas (Murguía et al. 2016), high biodiversity zones (Sonter et al. 2018), etc.

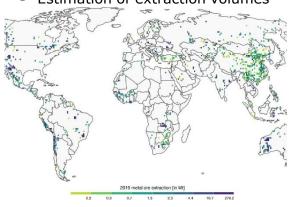
Geospatial data

Iron Quadrangle (Minas Gerais, Brazil); Source: FINEPRINT Viewer (www.fineprint.global/visualisations/viewer/)

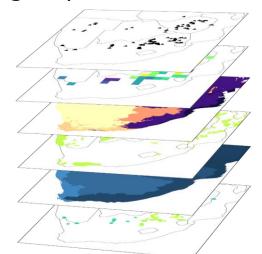
Mining impact

- Actual causal links
- We use quantitative empirical approaches
- E.g. causal links between mining and deforestation (Sonter et al. 2017, Giljum et al. *in preparation*)

Monitoring and contextual risk assessment

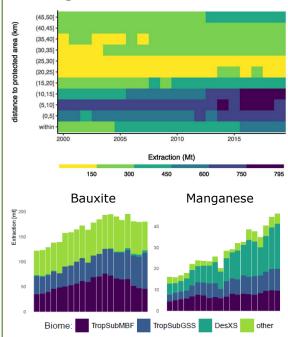


Georeferenced mining data


- **Point data** such as SNL Metals and Mining database
- Polygon data such as concession areas or actual land occupied by mining (Maus et al. 2020)

Luckeneder et al 2021:

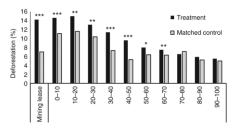
- 3,000 individual mines, 9 metals
- Yearly data for 2000-2019
- Estimation of extraction volumes



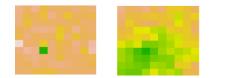
Intersection with other environmental and socio-economic geospatial data sets

- Vulnerability indicators, e.g.
 - Biodiversity
 - Protected areas
 - Water scarcity

Insights


- Early warning mechanism through a trend analysis of the global mining sector
- No detection of causality

Statistical models for estimating the impacts of mining activities



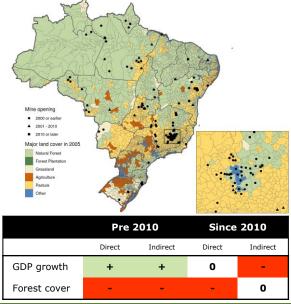
Cumulative impacts

- Spatial and temporal spillovers need to be considered (e.g. Bebbington et al. 2020)
- Indirect effects drive deforestation in the Brazilian Amazon up to 70 km beyond mining leases (Sonter et al. 2017)

 Enclave economies vs. beneficial economic agglomeration effects (Arias et al. 2013)

Spatial econometric methods

 Consideration of spatial dependence using weights (LeSage and Pace 2009)



 Enables computation of direct and indirect impacts

Application

Regional economic and land cover effects of mining activities in Brazil

- 5,249 Brazilian municipalities
- Panel for 2005-2013, land cover and socio-economic data

- Using spatial data has high potential for better mining management and policies
 - Better monitoring, taking spatial heterogeneities into consideration
 - Spatial dependence \rightarrow cumulative impacts
- Current challenges and limitations
 - Data
 - Rarely geocoded
 - Limited public information at the mine-level, e.g. extraction volumes
 - Insufficient temporal information, e.g. mine openings
 - Methods
 - Modelling heterogeneous connectivities between spatial units
 - Other
 - Interdisciplinary collaboration, involvement of "mining experts"

Thank you!

Contact: Sebastian Luckeneder sebastian.luckeneder@wu.ac.at

www.fineprint.global

github.com/fineprint-global

researchgate.net/project/FINEPRINT